# Dr Zacharias Anastassi

**Job:** Senior Lecturer in Computational Mathematics

**Faculty:** Technology

**School/department:** School of Computer Science and Informatics

**Research group(s):** Institute of Artificial Intelligence

**Address:** De Montfort University, The Gateway, Leicester, LE1 9BH

**T:** +44 116 257 7021

**E:** zacharias.anastassi@dmu.ac.uk

### Personal profile

Dr. Zacharias A. Anastassi received his PhD in Numerical Analysis in 2006 and his diploma in Civil Engineering in 2002. Before joining DMU in February 2018 as a Senior Lecturer in Computational Mathematics, he was an Assistant Professor at Qatar University for five and a half years and an Assistant Professor/Lecturer at various higher education institutes in Greece for six years totally.

Zacharias’ research interests include the numerical solution of initial/boundary value problems, the development and analysis of numerical algorithms, scientific computing and computational methods for the solution of real problems in physics, material science, chemistry, engineering etc., parallel algorithms and the development of software packages among others.

He has attracted funding through several research grants, has been involved in the organisation of international scientific conferences, organised symposia, co-edited special issues of international peer-reviewed journals and participated in the program committee of international conferences. He is currently deputy programme leader of the Mathematics BSc.

### Publications and outputs

P37. F. Tsitoura, Z.A. Anastassi, J.L. Marzuola, P.G. Kevrekidis, and D.J. Frantzeskakis, Dark Soliton Scattering in Symmetric and Asymmetric Double Potential Barriers, Physics Letters A, 381, 31, 2514-2520 (2017).

P36. Z.A. Anastassi, G. Fotopoulos, D.J. Frantzeskakis, T.P. Horikis, N.I. Karachalios, P.G. Kevrekidis, I.G. Stratis, and K. Vetas, Spatiotemporal algebraically localized waveforms for a nonlinear Schrödinger model with gain and loss, Physica D, 355, 24-33 (2017).

P35. F. Tsitoura, Z.A. Anastassi, J.L. Marzuola, P.G. Kevrekidis, and D.J. Frantzeskakis, Dark solitons near potential and nonlinearity steps, Physical Review A, 94, 063612 (2016).

P34. Z.A. Anastassi, A.A. Kosti, A 6(4) Optimized Embedded Runge-Kutta-Nyström Pair for the Numerical Solution of Periodic Problems, Journal of Computational and Applied Mathematics, 275, 311-320 (2015).

P33. A.A. Kosti, Z.A. Anastassi, Explicit Almost P-Stable Runge-Kutta-Nyström Methods for the Numerical Solution of the Two-Body Problem, Computational and Applied Mathematics, 34, 2, 647-659 (2015).

P32. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A New Eight-Step Symmetric Embedded Predictor-Corrector Method (EPCM) for Orbital Problems and Related IVPs with Oscillatory Solutions, The Astronomical Journal, 145, 75 (2013).

P31. Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems, Journal of Computational and Applied Mathematics, 236, 16, 3880-3889 (2012).

P30. I. Alolyan, Z.A. Anastassi, T.E. Simos, A New Family of Symmetric Linear Four-Step Methods for the Efficient Integration of the Schrödinger Equation and Related Oscillatory Problems, Applied Mathematics and Computation, 218, 9, 5370-5382 (2012).

P29. A.A. Kosti, Z.A. Anastassi, T.E. Simos, An optimized explicit Runge-Kutta-Nyström method for the numerical solution of orbital and related periodical initial value problems, Computer Physics Communications, 183, 3, 470-479 (2011).

P28. A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge-Kutta-Nyström method for the numerical solution of oscillatory initial value problems, Computers and Mathematics with Applications, 61, 11, 3381-3390 (2011).

P27. G.A. Panopoulos, Z.A. Anastassi, T. E. Simos, A Symmetric Eight-Step Predictor-Corrector Method for the Numerical Solution of the Radial Schrödinger Equation and related IVPs with oscillating solutions, Computer Physics Communications, 182, 8, 1626-1637 (2011).

P26. Z.A. Anastassi, A new symmetric linear eight-step method with fifth trigonometric order for the efficient integration of the Schrödinger equation, Applied Mathematics Letters, 24, 8, 1468-1472 (2011).

P25. G.A. Panopoulos, Z.A. Anastassi, T. E. Simos, A New Symmetric Eight-Step Predictor-Corrector Method for the Numerical Solution of the Radial Schrödinger Equation and Related Orbital Problems, International Journal of Modern Physics C, 22, 2, 133-153 (2011).

P24. D.F. Papadopoulos, Z.A. Anastassi, T.E. Simos, An optimized Runge-Kutta-Nyström method for the numerical solution of the Schrödinger equation and related problems, MATCH Commun. Math. Comput. Chem., 64, 2, 551-566 (2010).

P23. D.F. Papadopoulos, Z.A. Anastassi, T.E. Simos, A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation, Journal of Molecular Modeling, 16, 8, 1339-1346 (2010).

P22. A.A. Kosti, Z.A. Anastassi, T.E. Simos, An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems, Journal of Mathematical Chemistry, 47, 1, 315-330 (2010).

P21. Z.A. Anastassi and T.E. Simos: Numerical Multistep Methods for the Efficient Solution of Quantum Mechanics and Related Problems, Physics Reports, vol. 482-483, pp. 1-240 (2009).

P20. D.F. Papadopoulos, Z.A. Anastassi, T.E. Simos, A Phase-Fitted Runge-Kutta-Nyström method for the Numerical Solution of Initial Value Problems with Oscillating Solutions, Computer Physics Communications, 180, 10, 1839-1846 (2009).

P19. D.S. Vlachos, Z.A. Anastassi, T.E. Simos, High order phase fitted multistep integrators for the Schrödinger equation with improved frequency tolerance, Journal of Mathematical Chemistry, 46, 4, 1009-1049 (2009).

P18. D.S. Vlachos, Z.A. Anastassi, T.E. Simos, High order multistep methods with improved phase-lag characteristics for the integration of the Schrödinger equation, Journal of Mathematical Chemistry, 46, 2, 692-725 (2009).

P17. Z.A. Anastassi, D.S. Vlachos, T. E. Simos, A new methodology for the construction of numerical methods for the approximate solution of the Schrödinger equation, Journal of Mathematical Chemistry, 46, 2, 652-691 (2009).

P16. Z.A. Anastassi, D.S. Vlachos, T. E. Simos, A new methodology for the development of numerical methods for the numerical solution of the Schrödinger equation, Journal of Mathematical Chemistry, 46, 2, 621-651 (2009).

P15. D.S. Vlachos, Z.A. Anastassi, T.E. Simos, A New Family of Multistep Methods with Improved Phase Lag Characteristics for the Integration of Orbital Problems, The Astronomical Journal, 138, 86-94 (2009).

P14. G.A. Panopoulos, Z.A. Anastassi, T. E. Simos, Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions, Journal of Mathematical Chemistry, 46, 2, 604-620 (2009).

P13. Z.A. Anastassi, D.S. Vlachos, T. E. Simos, A family of Runge-Kutta methods with zero phase-lag and derivatives for the numerical solution of the Schrödinger equation and related problems, Journal of Mathematical Chemistry, 46, 4, 1158-1171 (2009).

P12. Z.A. Anastassi and T.E. Simos: A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution, Journal of Mathematical Chemistry, 45, 4, 1102-1129 (2009).

P11. Z.A. Anastassi and T.E. Simos: A Six-Step P-stable Trigonometrically-Fitted Method for the Numerical Integration of the Radial Schrödinger Equation, MATCH Commun. Math. Comput. Chem., 60, 3, 803-830 (2008).

P10. G.A. Panopoulos, Z.A. Anastassi and T.E. Simos: Two New Optimized Eight-Step Symmetric Methods for the Efficient Solution of the Schrödinger Equation and Related Problems, MATCH Commun. Math. Comput. Chem., 60, 3, 773-785 (2008).

P9. T.V. Triantafyllidis, Z.A. Anastassi and T.E. Simos: Two Optimized Runge-Kutta Methods for the Solution of the Schrödinger Equation, MATCH Commun. Math. Comput. Chem., 60, 3, 753-771 (2008).

P8. Z.A. Anastassi and T.E. Simos: New Trigonometrically Fitted Six-Step Symmetric Methods for the Efficient Solution of the Schrödinger Equation, MATCH Commun. Math. Comput. Chem., 60, 3, 733-752 (2008).

P7. Z.A. Anastassi and T.E. Simos: A Family of Exponentially-Fitted Runge-Kutta Methods with Exponential Order up to Three for the Numerical Solution of the Schrödinger Equation, Journal of Mathematical Chemistry, 41, 1, 79-100 (2007).

P6. Z.A. Anastassi and T.E. Simos: A Trigonometrically-Fitted Runge-Kutta Method for the Numerical Solution of Orbital Problems, New Astronomy, 10, 301-309 (2005).

P5. Z.A. Anastassi and T.E. Simos: Trigonometrically Fitted Fifth Order Runge-Kutta Methods for the Numerical Solution of the Schrödinger Equation, Mathematical and Computer Modelling, 42 (7-8), 877-886 (2005).

P4. Z.A. Anastassi and T.E. Simos: Trigonometrically Fitted Runge-Kutta Methods for the Numerical Solution of the Schrödinger Equation, Journal of Mathematical Chemistry, 37, 3, 281-293 (2005).

P3. Z.A. Anastassi and T.E. Simos: A Dispersive-Fitted and Dissipative-Fitted Explicit Runge-Kutta method for the Numerical Solution of Orbital Problems, New Astronomy, 10, 31-37 (2004).

P2. Z.A. Anastassi and T.E. Simos: An Optimized Runge-Kutta method for the Solution of Orbital Problems, Journal of Computational and Applied Mathematics, 175, 1-9 (2005).

P1. Z.A. Anastassi and T.E. Simos: Special Optimized Runge-Kutta methods for IVPs with Oscillating Solutions, International Journal of Modern Physics C, 15, 1-15 (2004).

### Research interests/expertise

Numerical analysis, Numerical solution of initial/boundary value problems, Development and analysis of numerical algorithms

Scientific computing, Computational methods for the solution of real problems in physics, material science, chemistry, engineering etc.

Development of software packages, Parallel algorithms

### Areas of teaching

Numerical Analysis, Applied Mathematics, Linear Algebra, Calculus, Linear Programming, Nonlinear Programming, Operational Research, Parallel Algorithms, Statistics, Business Mathematics

### Qualifications

Ph.D. in Numerical Analysis

Diploma in Civil Engineering

### Courses taught

Linear Algebra I (IMAT 1221)

Linear Algebra II (IMAT 1222)

Operational Research II (IMAT 2226)

### Honours and awards

Young Scientists Prize on Numerical Analysis and Applied Mathematics awarded by the Scientific Committee of the International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece (Sep 2005).

Ericsson Award of Excellence in Telecommunications, Athens, Greece (Jun 2005).

### Conference attendance

- The 27th Biennial Numerical Analysis Conference 2017 (NANCONF 2017), 27 to 30 June 2017, University of Strathclyde, Glasgow, Scotland, UK.
- Computational Techniques and Applications Conference (CTAC 2016), November 27-30, 2016, Melbourne, Australia.
- Global Conference on Applied Physics & Mathematics 2016, July 25-27, 2016, Rome, Italy.
- 3rd ECCOMAS Young Investigators Conference (YIC) – 6th GACM Colloquium on Computational Mechanics, July 20-23, 2015, Aachen, Germany.
- 3rd Aachen Conference on Computational Engineering Science (AC.CES), July 23-24, 2015, Aachen, Germany.
- International Conference Computational and Mathematical Methods in Science and Engineering (CMMSE) 2014, July 3-7, 2014, Rota, Cadiz, Spain.
- International Conference of Numerical Analysis and Applied Mathematics (ICNAAM) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, Greece.
- International Conference of Computational Methods in Sciences and Engineering (ICCMSE) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, Greece.
- International Electronic Conference on Computer Science (IeCCS) 2005, 2006, 2007, 2008, Greece.

- Gene around the World 2008, Tripolis, Greece.

### Externally funded research grants information

*Lead Principal Investigator*: NPRP9-329-1-067, “Split-ring resonator based nonlinear metamaterials: from few to many, theory and experiments”, funded by Qatar National Research Fund (2016 – 2019, Budget: **£574,000**).*Co-Lead Principal Investigator*: NPRP8-764-1-160, “Rogue Waves: From Oceans to Microwaves and Light”, funded by Qatar National Research Fund (2016 – 2019, Budget:**£610,000**).

### Professional esteem indicators

**Editorial Boards Memberships**

- Associate Editor of
**Applied Mathematics and Computation**, Elsevier (2010 - 2013) - Editor of
**Journal of Theoretical Chemistry**, Hindawi (2012 - 2017) - Editor of
**The Scientific World Journal**, Hindawi (2013 - 2016)

### Programme Committees

- Member of the Program Committee of the annual conference “Computer Aspects of Numerical Algorithms” - CANA (2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019)
- Member of the Program Committee of the conference “International Conference of Numerical Analysis and Applied Mathematics” - ICNAAM (2011, 2012)

### Reviewer Experience

**Reviewer for International Journals**

1. Engineering Optimization, Taylor & Francis

2. Hacettepe Journal of Mathematics and Statistics, Hacettepe University

3. Computer Physics Communications, Elsevier

4. International Journal of Modern Physics C, World Scientific

5. Applied Mathematics and Computation, Elsevier

6. Computers and Mathematics with Applications, Elsevier

7. Mathematical Methods in the Applied Sciences, Wiley

8. International Journal of Differential Equations, Hindawi

9. Journal of Applied Mathematics, Hindawi

10. Abstract and Applied Analysis, Hindawi

11. Discrete Dynamics in Nature and Society, Hindawi

12. Journal of Computational Methods in Sciences and Engineering, IOS Press

13. Computing Letters, Brill

14. Journal of Numerical Analysis, Industrial and Applied Mathematics

**Reviewer for Special Issues of International Journals**

1. Communications in Mathematical and in Computer Chemistry (MATCH), 60, 3, A Special Section "*Numerical Methods in Chemistry*" edited by Theodore E. Simos and Charalampos Tsitouras (2008)

2. Mathematical Methods in Applied Sciences, 30, 14, 1609 - 1854, “*Approximation, stability and error analysis*”, edited by Klaus Gürlebeck and Theodore Simos (2007)

3. Communications in Mathematical and in Computer Chemistry (MATCH), 53, 2, “*Papers presented on the International Conference on Computational Methods in Sciences and Engineering 2003*” (2005)

**Reviewer for International Conferences**

1. Computer Aspects of Numerical Algorithms (CANA) 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017.

2. International Conference of Numerical Analysis and Applied Mathematics (ICNAAM) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011.

3. International Conference of Computational Methods in Sciences and Engineering (ICCMSE) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011.

4. International electronic Conference on Computer Science (IeCCS) 2005, 2006, 2007, 2008.