Dr Avninder S Bhambra

Job: Associate Professor

Faculty: Health and Life Sciences

School/department: School of Allied Health Sciences

Research group(s): Institute of Allied Health Sciences Research

Address: De Montfort University, The Gateway, Leicester, LE1 9BH

T: 0116 2078792

E: abhambra@dmu.ac.uk

W: https://www.dmu.ac.uk/alliedhealthsciences

 

Personal profile

Dr Bhambra is an Associate Professor within the Faculty of Health and Life Sciences (HLS) at De Montfort University (DMU). Throughout his time at DMU, Dr Bhambra has taught across multiple HLS undergraduate and postgraduate degree programmes using an engaging and adaptive teaching and learning philosophy. He is an experienced Programme Leader where he successfully led the Institute of Biomedical Science  (IBMS) accredited BSc Biomedical Science programme. As an experienced academic with an interest in quality assurance, Dr Bhambra is actively involved in quality related events with higher education institutes and accrediting bodies across the health and life science disciplines.  

Dr Bhambra’s research interests lie at the interface between biology and chemistry, with particular focus on developing potential drug candidates for cancer and neglected tropical diseases including human African trypanosomiasis, Chagas disease and leishmaniasis. This involves exploring naturally occurring molecules from a range of plant sources and synthetics within various bioassays. The design of synthetic molecules is based on either bioactivity guided structure activity relationship analyses or by implementing in silico drug development techniques against relevant drug targets.

Research group affiliations

Institute of Allied Health Sciences Research

Publications and outputs

  • Analysis of plant secondary metabolism using stable isotope‐labelled precursors
    dc.title: Analysis of plant secondary metabolism using stable isotope‐labelled precursors dc.contributor.author: Arroo, R. R. J.; Bhambra, Avninder S.; Hano, Christophe; Renda, Gülin; Ruparelia, Ketan C.; Wang, Meng F. dc.description.abstract: Introduction Analysis of biochemical pathways typically involves feeding a labelled precursor to an organism, and then monitoring the metabolic fate of the label. Initial studies used radioisotopes as a label and then monitored radioactivity in the metabolic products. As analytical equipment improved and became more widely available, preference shifted the use stable ‘heavy’ isotopes like deuterium (2H)‐, carbon‐13 (13C)‐ and nitrogen‐15 (15N)‐atoms as labels. Incorporation of the labels could be monitored by mass spectrometry (MS), as part of a hyphenated tool kits, e.g. Liquid chromatography (LC)–MS, gas chromatography (GC)–MS, LC–MS/MS. MS offers great sensitivity but the exact location of an isotope label in a given metabolite cannot always be unambiguously established. Nuclear magnetic resonance (NMR) can also be used to pick up signals of stable isotopes, and can give information on the precise location of incorporated label in the metabolites. However, the detection limit for NMR is quite a bit higher than that for MS. Objectives A number of experiments involving feeding stable isotope‐labelled precursors followed by NMR analysis of the metabolites is presented. The aim is to highlight the use of NMR analysis in identifying the precise fate of isotope labels after precursor feeding experiments. As more powerful NMR equipment becomes available, applications as described in this review may become more commonplace in pathway analysis. Conclusion and Prospects NMR is a widely accepted tool for chemical structure elucidation and is now increasingly used in metabolomic studies. In addition, NMR, combined with stable isotope feeding, should be considered as a tool for metabolic flux analyses. dc.description: Special issue of Phytochemical Analysis on NMR-based analytical techniques. open access article
  • The Discovery of Novel Antitrypanosomal 4-phenyl-6-(pyridin-3-yl)pyrimidines
    dc.title: The Discovery of Novel Antitrypanosomal 4-phenyl-6-(pyridin-3-yl)pyrimidines dc.contributor.author: Robinson, W. J.; Taylor, Annie; Lauga-Cami, S.; Weaver, G. W.; Arroo, R. R. J.; Kaiser, M.; Gul, S.; Kuzikov, M.; Ellinger, B.; Singh, K.; Schirmeister, T.; Botana, A.; Eurtivong, C.; Bhambra, Avninder S. dc.description.abstract: Human African trypanosomiasis, or sleeping sickness, is a neglected tropical disease caused by Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense which seriously affects human health in Africa. Current therapies present limitations in their application, parasite resistance, or require further clinical investigation for wider use. Our work herein describes the design and syntheses of novel antitrypanosomal 4-phenyl-6-(pyridin-3-yl)pyrimidines, with compound 13, the 4-(2-methoxyphenyl)-6-(pyridine-3-yl)pyrimidin-2-amine demonstrating an IC50 value of 0.38 µM and a promising off-target ADME-Tox profile in vitro. In silico molecular target investigations showed rhodesain to be a putative candidate, supported by STD and WaterLOGSY NMR experiments, however, in vitro evaluation of compound 13 against rhodesain exhibited low experimental inhibition. Therefore, our reported library of drug-like pyrimidines present promising scaffolds for further antikinetoplastid drug development for both phenotypic and target-based drug discovery. dc.description: open access article
  • Chemopreventive Potential of Flavones, Flavonols, and their Glycosides.
    dc.title: Chemopreventive Potential of Flavones, Flavonols, and their Glycosides. dc.contributor.author: Arroo, R. R. J.; Wang, Meng F.; Bhambra, Avninder S. dc.description.abstract: Epidemiological studies have long indicated a possible role for dietary flavonoids, notably flavones and flavonols, in the prevention of a range of degenerative diseases, e.g. cancer, diabetes, cardiovascular diseases and neurological disorders like Parkinson’s and Alzheimer’s disease. The flavonoids are a large and variable group of compounds, comprising thousands of different structures. The bulk of the dietary flavonoids occur as glycosides. The effect of flavonoid aglycones and their corresponding glycosides on cell metabolism and aetiology of degenerative diseases has been a topic of interest for a number of decades. In contrast, the role of the metabolic products of dietary flavonoid that reach all parts of the human body through systemic circulation, has received much less attention. Studies on animal and human metabolism have shown that the amount flavone and flavonol glycosides is absorbed intact is negligible; the bulk is absorbed only after deglycosylation. Thus, dietary glycosides are not likely to play a direct role in chemoprevention. However, the sugar groups on glycosides can greatly affect the bioavailability of flavones and flavonols. Flavonoids linked with indigestible sugars are not absorbed in the small intestine, but are transported through the digestive tract to be degraded by gut bacteria in the large intestine. The compounds that directly play a tole in the prevention of degenerative diseases are most likely not dietary flavones themselves, but rather their metabolites and conjugation products. dc.description: Collaboration between Leicester Institute for Pharmaceutical Innovation and the Institute for Allied Heath Sciences Research.
  • Bioproduction of Anticancer Podophyllotoxin and Related Aryltretralin-Lignans in Hairy Root Cultures of Linum Flavum L.
    dc.title: Bioproduction of Anticancer Podophyllotoxin and Related Aryltretralin-Lignans in Hairy Root Cultures of Linum Flavum L. dc.contributor.author: Mikac, Sara; Markulin, Lucija; Drouet, Samantha; Corbin, Cyrielle; Tungmunnithum, Duangjai; Kiani, Reza; Kabra, Atul; Abassi, Bilal Haider; Renouard, Sullivan; Fuss, Elisabeth; Hano, Christophe; Arroo, R. R. J.; Bhambra, Avninder S.; Laine, Eric dc.description.abstract: Podophyllotoxin (PPT) is the unique natural precursor of Etoposide, a topoisomerase II inhibitor drug, used in more than a dozen anticancer chemotherapy treatments. Etoposide is appearing on the list of essential medicines of the World Health Organization. PPT is still exclusively extracted from the rhizome of Podophyllum species, its main natural source. The supply of Podophyllum hexandrum plants is limited, since the occurrence of these plant species is scarce, collection is destructive, and the plants need a long regeneration period. As a consequence, this species is now endangered and listed on Appendix II of the Convention on International Trading of Endangered Species. Chemical synthesis of PPT is difficult due to the presence of four contiguous chiral centers and the presence of a base sensitive trans-lactone moiety. Alternatives are being actively searched, but so far, no wild plants have been described with similar PPT production capacity as compared to Podophyllum. However, several plants producing PPT or other related aryltetralin lignans (ATL) have been identified in recent decades, including the Linaceae. Given its high lignan accumulation capacity, Linum flavum is considered a promising alternative source of PPT and other related ATL. However, unlike the common flax L. usitatissimum, L. flavum has a low agricultural potential (e.g., slow growth and dehiscence of fruits). Therefore, in vitro cultures of plant cells and/or tissues provide an interesting alternative to whole L. flavum plants for the production of these valuable ATL. In particular, L. flavum hairy roots (HRs) accumulate high levels of ATL and it is also possible to further increase this ATL accumulation by the selection of the best genotype, optimization of cultures media and conditions and choice of carbon sources, use of plant growth regulators, elicitor treatments, or precursors’ addition. To date, the ATL accumulation levels can still be perceived insufficient for L. flavum HRs before being used as a commercially viable biotechnological production system. To reach this goal, a better knowledge of the mechanisms that regulate the metabolic flux of intermediates in the different branches of the ATL metabolic pathway will be an important prerequisite to direct the biosynthesis toward the production of a high amount of the desired PPT. In the future, metabolic engineering aiming at constructing the PPT pathway in a heterologous host is very appealing, but for that approach in-depth knowledge of the biosynthetic pathway toward PPT and other related ATL is necessary.
  • Synthesis of Novel CYP1 Activated Heterocyclic Anticancer Prodrugs
    dc.title: Synthesis of Novel CYP1 Activated Heterocyclic Anticancer Prodrugs dc.contributor.author: Bhambra, Avninder S. dc.description.abstract: The cytochrome P450 superfamily of enzymes are critical in the metabolism of endogenous and exogenous substrates. CYP1A1 and CYP1B1 have been found to be over-expressed in tumour cells whilst undetected or present in very low levels in corresponding normal tissue. This presented a novel target for the development of anti-cancer prodrugs, which would remain non-toxic until undergoing metabolism to toxic species by CYP1 enzymes over-expressed at tumour sites. The chalcones have been shown to exhibit effective anti-cancer prodrug activity, but are labile to photoisomerisation reactions converting the potent trans isomer to the less toxic cis isomer. Several heterocyclic ring systems were incorporated across the α,β-unsaturated moiety of the chalcones to produce rigid structures, eliminating the possibility of photoisomerisation occurring whilst maintaining the substituted phenyl groups in a trans like geometry. Lead compounds were identified using an in vitro MTT screening assay against a panel of tumour cell lines characterised for their constitutive or inducible CYP1 expression. These were the MDA 468, MCF7 and MDA 231 cell lines. The non-tumour MCF10A cell line which has no basal CYP1 expression was used as the control. A library of eighteen 3,5-diarylpyrazoles were synthesised. The lead pyrazole DMU 10107 (3-(2,3,4-trimethoxyphenyl)-5-(3,4-methylenedioxyphenyl)pyrazole) gave an IC50 value of 8μM towards the MDA 468 cell line. The MCF7 cells, TCDD induced and non-induced gave IC50 values of 10μM each. Although the pyrazoles showed plausible tumour toxicity, an investigation into six membered pyrimidine heterocycles was undertaken in an attempt to obtain enhanced cytotoxicities than those observed from the five membered pyrazoles. Therefore, a library of fifteen 2-amino-4,6-diarylpyrimidines was synthesised. The lead amino-pyrimidine DMU 10212 (2-amino-4-(2,4-dimethoxyphenyl)-6-(3,4-methylenedioxyphenyl)pyrimidine) showed significant cytotoxicity towards the MDA 468 cell line with an IC50 value of 0.01μM. Notable IC50 values of 0.3μM and 0.07μM were also observed towards the MCF7 and MCF7 cells induced with TCDD. The important toxicity seen from the 2-amino-4,6-diarylpyrimidines prompted the investigation of the 2-position of the pyrimidine ring, and to assess the tumour toxicities of the synthesised compounds. The 2-amino-4,6-diarylpyrimidines were converted to produce 4,6-diarylpyrimidones by a one-step conversion reaction using sodium nitrate. The pyrimidone DMU 10313 (4-(2-methoxyphenyl)-6-(3,4-methylenedioxyphenyl)pyrimidin-2-one) showed high toxicity with an IC50 value of 0.07μM towards the MDA 468 cells and IC50 values of 1.8μM and 0.5μM 3 towards the MCF7 and MCF7 cells induced with TCDD. A library of nine 2-morpholino-4,6-diarylpyrimidines was synthesised. The lead compound DMU 10405 (4-(2,4-dimethoxyphenyl)-6-(4-methoxyphenyl)-2-morpholinopyrimidine) gave an IC50 value of 10μM towards the MDA 468 cells. DMU 10600 (4-(2,4-dimethoxyphenyl)-6-(3,4-methylenedioxyphenyl)-2-dimethylethylenediaminopyrimidine), showed an IC50 value of 7μM towards the MDA 468 cells and an identical IC50 value of 10μM towards the MCF7 and MCF7 cells treated with TCDD. DMU 10700 (2-methyl-4-(2,4-dimethoxyphenyl)-6-(3,4-methylenedioxyphenyl)pyrimidine), a substituted pyrimidine based on the phenyl substitutions of DMU 10212 gave an IC50 value of 2.5μM towards the MDA 468 cells. DMU 10800 (4-(2,4-dimethoxyphenyl)-6-(3,4-methylenedioxyphenyl)pyrimidine), also based on the phenyl substitutions of DMU 10212 showed an IC50 value of 0.08μM towards the MDA 468 cells and equal IC50 values of 0.2μM against the MCF7 and MCF7 cells induced with TCDD. All lead compounds did not show toxicity towards the non-tumour MCF10A cell line. DMU 10212 was selected as the overall lead compound due to the significant tumour toxicities recorded, and for the non-toxicity observed towards the MCF10A cells. Inhibition studies using the known CYP1 inhibitor α-naphthoflavone (α-NF) were conducted to show that DMU 10212 was a substrate of the CYP1 enzymes. The resulting data showed that the cytotoxicity of DMU 10212 was completely eliminated suggesting CYP1 enzymes play an activating role in the cytotoxic effect of DMU 10212. LCMS metabolism studies using isolated CYP1 isoforms were performed showing that DMU 10212 is metabolised to produce four metabolites (M1, M2, M3 and M4), determined from their individual retention times and molecular masses. The metabolites of DMU 10212 were also found to be generated at a greater rate with CYP1A1 than CYP1B1. Metabolite structures were proposed as CYP1 enzyme reactions are known. The metabolite M2 was synthesised and was identified to be an authentic metabolite of DMU 10212 via LCMS and co-elution studies. Screening of M2 against the tumour cells gave an IC50 value of 0.6μM towards the MDA 468 cells, and IC50 values of 0.6μM and 1μM against the MCF7 and MCF7 cells induced with TCDD. In conclusion, DMU 10212, a novel CYP1 activated anticancer prodrug with selective high toxicity towards tumour cells has been identified.
  • Investigation of Linum flavum (L.) Hairy Root Cultures for the Production of Anticancer Aryltetralin Lignans.
    dc.title: Investigation of Linum flavum (L.) Hairy Root Cultures for the Production of Anticancer Aryltetralin Lignans. dc.contributor.author: Arroo, R. R. J.; Hano, C.; Renouard, S.; Corbin, C.; Drouet, S.; Medvedec, B.; Doussot, J.; Colas, C.; Maunit, B.; Bhambra, Avninder S.; Gontier, E.; Jullian, N.; Mesnard, F.; Boitel, M.; Abbasi, B. H.; Lainé, E. dc.description.abstract: Linum flavum hairy root lines were established from hypocotyl pieces using Agrobacterium rhizogenes strains LBA 9402 and ATCC 15834. Both strains were effective for transformation but induction of hairy root phenotype was more stable with strain ATCC 15834. Whereas similar accumulation patterns were observed in podophyllotoxin-related compounds (6-methoxy-podophyllotoxin, podophyllotoxin and deoxypodophyllotoxin), significant quantitative variations were noted between root lines. The influence of culture medium and various treatments (hormone, elicitation and precursor feeding) were evaluated. The highest accumulation was obtained in Gamborg B5 medium. Treatment with methyl jasmonate, and feeding using ferulic acid increased the accumulation of aryltetralin lignans. These results point to the use of hairy root culture lines of Linum flavum as potential sources for these valuable metabolites as an alternative, or as a complement to Podophyllum collected from wild stands. dc.description: Collaboration with: Université d’Orléans, 28000 Chartres, France, Université de Picardie Jules Verne, F-80037 Amiens, France De Montfort University Open access article
  • Building on-line materials for teaching parasitology to health sciences’ students: initial impressions.
    dc.title: Building on-line materials for teaching parasitology to health sciences’ students: initial impressions. dc.contributor.author: Pena-Fernandez, A.; Ollero, M.; Fenoy, S.; Magnet, A.; Mackenzie, S.; Pena, M. A.; Izquierdo, F.; Hurtado, C.; Ioannou, M.; Bornay, F.; Halliwell, R.; Acosta, L.; Torrus, D.; Singh, Harprit; Sgamma, Tiziana; Evans, M.; Bhambra, Avninder S.; Baho, S.; del Aguila, C. dc.description.abstract: Background: It is widely recognised that the use of web-based teaching resources is an increasingly important method for delivering education, and it will be particularly important in the near future due to the progressively increasing number of health science students and the current number of academics in the “European Higher Education Area”. The study of parasitology and infectious diseases is essential to build professionals in the health sector with the key knowledge and skills to face global public health threats such as food-, water- or vector-borne infectious diseases outbreaks. However, the current time dedicated to the teaching of this discipline in all health sciences degrees at De Montfort University (DMU, Leicester, UK) is very little or non-existent depending on the degree/master. Methods: An innovative teaching group at DMU is trying to fill this gap in the currently available teaching offer in line with new trends in global health education, the large number of students enrolled in any health degree and the increasing number of students that would like to study this discipline (but due to different commitments do not have enough time or resources to study on a full time basis). Thus, an innovative teaching group from different EU Universities (DMU and the Spanish universities: University of San Pablo CEU, University of Alcalá, and University Miguel Hernández de Elche) and clinicians (University Hospitals of Leicester, UK) have started to design, create and develop a complete on-line package in Parasitology for undergraduate and postgraduate students that study health sciences. Results: The e-Parasitology package will be accessible through the DMU website (http://parasitology.dmu.ac.uk) in 2017 and will be focused on infection, prevention and treatment of major and emerging parasitological diseases. Conclusions: This teaching resource will aid our undergraduate and postgraduate students to gain a significant knowledge in parasitology by promoting self-learning and internationalization. This poster will explore one of the first mini-modules developed so far related with Toxocara, a helminthiasis with prevalence rates that can reach as high as 40% or more in parts of the world, and the challenges for its development.
  • A meta-analysis study of antimicrobial resistant E. coli in the environment.
    dc.title: A meta-analysis study of antimicrobial resistant E. coli in the environment. dc.contributor.author: Knight, S.; Bhambra, Avninder S.; Lobo-Bedmar, M. C.; Pena-Fernandez, A. dc.description.abstract: There is increasing evidence that urban animals could play a significant role in the spread of antibiotic-resistant (AR) bacterial infections. Wild birds and pigeons have been found as carriers of multidrug-resistance Escherichia coli (E. coli) in urban ecosystems, which could threaten public health. Although AR bacteria pose challenges to healthcare systems, little is known about the prevalence and distribution of such bacteria in the environment, particularly in the built-up environment. The aim of this study was to review the literature to identify what is known so far and to identify possible animal species that should be targeted in urban environments as part of the national and international response to tackle the AR phenomenon. A systematic review was performed following the Cochrane guidelines to identify peer-reviewed articles investigating AR strains of E. coli published from January 2006 onwards. Eligible studies were selected based on inclusion criteria: carried out in urban areas in Europe; determined E. coli in isolates from urban animals by molecular methods; and results were clear and easy to extract to determine the pooled prevalence according to previous methodologies. Only 18 studies were identified as eligible and were subjected to the meta-analysis following the Cochrane recommendations. The results have highlighted that the occurrence of AR E. coli in Europe has significantly increased since 2014. The study has indicated a different occurrence of such bacteria in urban environments in Europe. Thus, higher prevalence was observed in the Netherlands, Portugal and Spain, meanwhile Latvia and Sweden had the lowest. Finally, urban avian (pigeons and gulls) and canine (domestic) species have been identified as the most likely carriers of AR E. coli in urban environments. Although these results should be considered as preliminary, special attention should be drawn to consider urban animal species in any intervention to reduce the AMR phenomenon.
  • The synthesis of chalcones as anticancer prodrugs and their bioactivation in CYP1 expressing breast cancer cells
    dc.title: The synthesis of chalcones as anticancer prodrugs and their bioactivation in CYP1 expressing breast cancer cells dc.contributor.author: Ruparelia, K. C.; Ljaza, T.; Ankrett, D. N.; Wilsher, Nicola Elizabeth; Lodhia, S.; Beresford, Kenneth J. M.; Bhambra, Avninder S.; Arroo, R. R. J.; Potter, Gerard A.; Butler, P. C.; Tan, Hoon Leong; Zeka, K. dc.description.abstract: Abstract: Background: Although the expression levels of many P450s differ between tumour and corresponding normal tissue, CYP1B1 is one of the few CYP subfamilies which is significantly and consistently overexpressed in tumours. CYP1B1 has been shown to be active within tumours and is capable of metabolising a structurally diverse range of anticancer drugs. Because of this, and its role in the activation of procarcinogens, CYP1B1 is seen as an important target for anticancer drug development. Objectives: To synthesise a series of chalcone derivatives based on the chemopreventative agent DMU-135 and investigate their antiproliferative activities in human breast cancer cell lines which express CYP1B1 and CYP1A1. Method: A series of chalcones were synthesised in yields of 43-94% using the Claisen-Schmidt condensation reaction. These were screened using a MTT assay against a panel of breast cancer cell lines which have been characterised for CYP1 expression. Results: A number of derivatives showed promising antiproliferative activities in human breast cancer cell lines which express CYP1B1 and CYP1A1, while showing significantly lower toxicity towards a non-tumour breast cell line with no CYP expression. Experiments using the CYP1 inhibitors acacetin and 􀀁-naphthoflavone provided supporting evidence for the involvement of CYP1 enzymes in the bioactivation of these compounds. Conclusions: Chalcones show promise as anticancer agents with evidence suggesting that CYP1 activation of these compounds may be involved. dc.description: The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link
  • Can new digital technologies support student retention and engagement?
    dc.title: Can new digital technologies support student retention and engagement? dc.contributor.author: Pena-Fernandez, A.; Randles, Michael J.; Young, Christopher N. J.; Potiwat, N.; Bhambra, Avninder S. dc.description.abstract: University students in their first year face a myriad of challenges such as information overload, poor individual attention and/or minimal interaction with their peers, which can impede their progress through higher education. These challenges, together with other factors, have an impact on student retention and progression that needs to be addressed. We have established a range of strategies to improve retention and progression of new Biomedical Science (BMS) students at De Montfort University (DMU, UK) in 2016/17, including an intensive induction week with social and networking events with academics to enhance the development of constructive relationships. We have also increased the number of lectures on foundation in biology, chemistry and maths, introduced more tutorials and created “surgery” hours or weekly drop-in sessions in each module. These strategies could have been translated into a reduction in the percentage of students that abandon their BMS studies after their first year from 10.3% (24 students) in 2015/16 to 6.5% (13 students) in 2016/17, according to DMU reporting software (Tableau). However, we have noted that some of our BMS students require more basic support in STEM subjects (biology and chemistry), particularly those students that enter from the Business and Technology Education Council (BTEC) pathway, despite having met university-set entry requirements and the modifications to the curriculum to cater for such students. To address these limitations, we have started to develop a complete e-learning package designed to enhance learning and underpin the fundamental concepts of biology and biochemistry. The development of the DMU e-Biology package started in 2017 and covers the specifications for AS and A level described by the Assessment and Qualifications Alliance (AQA, 2017) for human biology as well as the basic concepts delivered in our first year modules. The DMU e-Biology also has interactive case studies related to topics of interest for our students, such as alcohol abuse and biomarkers of disease in clinical samples, to encourage self-learning and autonomous work on the part of the user. The main aim of the virtual case studies is to facilitate the development of students’ abilities to critically evaluate and use evidence from the literature, skills that are invaluable to any scientist and indeed key for future generations of biomedical scientists. The final package will be publicly available on the DMU website (http://parasitology.dmu.ac.uk/ebiology/home.htm) in 2018, after reviewing student feedback. The availability of this resource prior to students starting their course may enable earlier engagement and improve student retention.

View a full listing of Dr Avninder Bhambra's publications and outputs

Research interests/expertise

Structure and ligand based drug design 

Natural products chemistry

In vitro drug screening

Pedagogy 

Qualifications

  • BSc (Hons)
  • PhD
  • PGCert
  • MRSC
  • CChem
  • FIBMS

Courses taught

  • BSc Biomedical Science
  • BMedSci Medical Science
  • MSc Advanced Biomedical Science

Membership of professional associations and societies

  • Member of the Royal Society of Chemistry
  • Chartered Chemistt (CChem)
  • Member of the Phytochemical Society of Europe
  • Fellow of the Higher Education Academy
  • Fellow of the Institute of Biomedical Science
  • Editorial Board member for Cogent Chemistry

Current research students

Currently supervising PhD students internally and externally.

Please contact for Master's by Research or PhD opportunities.