Professor Francisco Chiclana

Job: Professor of Computational Intelligence and Decision Making

Faculty: Computing, Engineering and Media

School/department: School of Computer Science and Informatics

Research group(s): Center for Computational Intelligence (CCI)

Address: De Montfort University, The Gateway, Leicester, LE1 9BH UK

T: +44 (0)116 207 8413

E: chiclana@dmu.ac.uk

W: http://www.tech.dmu.ac.uk/~chiclana/

 

Personal profile

Professor Francisco Chiclana received the B.Sc. and Ph.D. degrees in Mathematics, both from the University of Granada (Spain) in 1989 and 2000, respectively. He is currently a Professor of Computational Intelligence and Decision Making, and founder of DIGITS - De Montfort University Interdisciplinary Group in Intelligent Transport Systems, Faculty of Technology, De Montfort University (Leicester, UK). 

Professor Francisco Chiclana was the Coordinator of DMU submission for REF 2014 UOA 11: Computer Science and Informatics. 

Professor Chiclana has been Deputy Course Leader of the MScs in Computing, Information Technology, and Information Systems Management; Programme Tutor Years 1 and 2 of the BSc/HND/FD Business Information Technology. In 2013, Professor Chiclana co-developed the Doctoral Training Programme (DTP) in Intelligent Systems (IS) that he presently co-leads. Currently, he is Course Leader of BSc/MCOMP in Intelligent Systems (IS) and of MSc IS/ IS & Robotics (ISR).

Research group affiliations

Publications and outputs

  • Practical Consequences of Quality Views in Assessing Software Quality
    Practical Consequences of Quality Views in Assessing Software Quality Galli, Tamas; Chiclana, Francisco; Siewe, Francois The authors’ previously published research delved into the theory of software product quality modelling, model views, concepts, and terminologies. They also analysed this specific field from the point of view of uncertainty, and possible descriptions based on fuzzy set theory and fuzzy logic. Laying a theoretical foundation was necessary; however, software professionals need a more tangible and practical approach for their everyday work. Consequently, the authors devote this paper to filling in this gap; it aims to illustrate how to interpret and utilise the previous findings, including the established taxonomy of the software product quality models. The developed fuzzy model’s simplification is also presented with a Generalized Additive Model approximation. The paper does not require any formal knowledge of uncertainty computations and reasoning under uncertainty, nor does it need a deep understanding of quality modelling in terms of terminology, concepts, and meta-models, which were necessary to prepare the taxonomy and relevance ranking. The paper investigates how to determine the validity of statements based on a given software product quality model; moreover, it considers how to tailor and adjust quality models to the particular project’s needs. The paper also describes how to apply different software product quality models for different quality views to take advantage of the automation potential offered for the measurement and assessment of source code quality. Furthermore, frequent pitfalls are illustrated with their corresponding resolutions, including an unmeasured quality property that is found to be important and needs to be included in the measurement and assessment process. open access article Galli, T., Chiclana, F., Siewe, F. (2023) Practical Consequences of Quality Views in Assessing Software Quality. Axioms, 12 (6), 529
  • A Local Adjustment Method to Improve Multiplicative Consistency of Fuzzy Reciprocal Preference Relations
    A Local Adjustment Method to Improve Multiplicative Consistency of Fuzzy Reciprocal Preference Relations Xu, Yejun; Wang, Qianqian; Chiclana, Francisco; Herrera-Viedma, Enrique Preferences that verify the transitivity property are usually referred to as rational or consistent preferences. Existent methods to improve the consistency of inconsistent fuzzy reciprocal preference relations (FPRs) fail to retain the original preference values because they always derive a new FPR. This article presents a new inconsistency identification and modification (IIM) method to detect and rectify only the most inconsistent elements of an inconsistent FPR. As such, the proposed IIM can be considered a local adjustment method to improve multiplicative consistency (MC) of FPRs. The case of inconsistent FPRs with missing values, i.e., incomplete FPRs, is addressed with the estimation of the missing preferences with a constrained nonlinear optimization model by the application of the IIM method. The implementation process of the proposed algorithms is illustrated with numerical examples. Simulation experiments and comparisons with existent methods are also included to show that the new method requires fewer iterations than existent methods to improve the MC of FPRs and achieves better MC level, while preserving the original preference information as much as possible than the existent methods. Thus, the results presented in this article demonstrate the correctness, effectiveness, and robustness of the proposed method. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. Xu, Y., Wang, Q., Chiclana, F. and Herrera-Viedma, E. (2023) A Local Adjustment Method to Improve Multiplicative Consistency of Fuzzy Reciprocal Preference Relations. IEEE Transactions on Systems, Man and Cybernetics: Systems,
  • Multi-objective optimization-based collective opinion generation with fairness concern
    Multi-objective optimization-based collective opinion generation with fairness concern Chen, Zhen-Song; Zhu, Zhengze; Herrera-Viedma, Enrique; Wang, Xian-Jia; Chiclana, Francisco; Skibniewski, Mirosław J. The generation of collective opinion based on probability distribution function (PDF) aggregation is gradually becoming a critical approach for tackling immense and delicate assessment and evaluation tasks in decision analysis. However, the existing collective opinion generation approaches fail to model the behavioral characteristics associated with individuals, and thus, cannot reflect the fairness concerns among them when they consciously or unconsciously incorporate their judgments on the fairness level of distribution into the formulations of individual opinions. In this study, we propose a multiobjective optimization-driven collective opinion generation approach that generalizes the bi-objective optimization-based PDF aggregation paradigm. In doing so, we adapt the notion of fairness concern utility function to characterize the influence of fairness inclusion and take its maximization as an additional objective, together with the criteria of consensus and confidence levels, to achieve in generating collective opinion. The formulation of fairness concern is then transformed into the congregation of individual fairness concern utilities in the use of aggregation functions. We regard the generalized extended Bonferroni mean (BM) as an elaborated framework for aggregating individual fairness concern utilities. In such way, we establish the concept of BM-type collective fairness concern utility to empower multiobjective optimization-driven collective opinion generation approach with the capacity of modeling different structures associated with the expert group with fairness concern. The application of the proposed fairness-aware framework in the maturity assessment of building information modeling demonstrates the effectiveness and efficiency of multiobjective optimization-driven approach for generating collective opinion when accomplishing complicated assessment and evaluation tasks with data scarcity. open access article Chen, Z-S., Zhu, Z., Herrera-Viedma, E., Wang, X-J., Chiclana, F., Skibniewski, M.J. (2023) Multi-objective optimization-based collective opinion generation with fairness concern. IEEE Transactions on Systems, Man and Cybernetics: Systems,
  • A weight penalty mechanism for non-cooperative behavior in large-scale group decision making with unbalanced linguistic term sets
    A weight penalty mechanism for non-cooperative behavior in large-scale group decision making with unbalanced linguistic term sets Sun, Qi; Chiclana, Francisco; Wu, Jian; Liu, Yujia; Liang, Changyong; Herrera-Viedma, Enrique This paper proposes a novel framework to manage subgroups’ non-cooperative behavior by weight penalty in large scale group decision making (LSGDM). To do that, a trust consensus index (TCI) is defined by combining trust score and consensus degree among experts expressed by unbalanced linguistic term sets. A Louvain algorithm clustering process based on undirected graph composed of TCI is introduced to detect the subgroups in large network. Hence, a weight penalty feedback model is established to manage the subgroups detected as discordant and non-cooperative. The proposed method novelty resides in that the minimum adjustment cost can be obtained with respect to the penalty parameter. A detail analysis regarding the computation of the optimal penalty parameter to prevent excessive penalization is reported. Finally, a detailed numerical and comparative analyses are provided to verify the validity of the proposed method. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. Sun, Q., Chiclana, F., Wu, J., Liu, Y., Liang, C. and Viedma, E.H. (2023) A weight penalty mechanism for non-cooperative behavior in large-scale group decision making with unbalanced linguistic term sets. IEEE Transactions on Fuzzy Systems.
  • The overlapping community driven feedback mechanism to support consensus in social network group decision making
    The overlapping community driven feedback mechanism to support consensus in social network group decision making Ji, Feixia; Wu, Jian; Chiclana, Francisco; Wang, Sha; Fujita, Hamido; Herrera-Viedma, Enrique Abstract—Social network group decision-making (SN-GDM) provides valuable support for obtaining agreed decision results by effectively utilizing the connected social trust relationships among individuals. However, the impact of intricately overlapped social trust relationships within overlapping communities on evaluation modifications in the SN-GDM consensus reaching process is seldom considered. To alleviate this issue, this study attempts to construct an overlapping community driven feedback mechanism for improving consensus in SN-GDM. The Lancichinetti-Fortunato method (LFM) is used to detect the overlapping community structures under social trust networks. Subsequently, the trusted recommendation advice is conducted within overlapping communities, which guides the inconsistent subgroups to make an interaction with each other to reach higher consensus level. Then, an associated feedback mechanism for SNGDM with overlapping communities is proposed, which enables the inconsistent subgroups to minimize the consensus cost by selecting personalized feedback parameters. Moreover, it shows that the overlapping communities based feedback mechanism is superior to the feedback mechanisms with non-overlapping communities. Finally, an illustrative example is included, which is also used to testify the efficacy of proposal by comparing the consensus cost under different representative recommendation advice in overlapping social trust networks. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link Ji, F., Wu, J., Chiclana. F., Wang, S., Fujita, H. and Herrera-Viedma, E. (2023) The overlapping community driven feedback mechanism to support consensus in social network group decision making. IEEE Transactions on Fuzzy Systems,
  • An Evolutionary Intelligent Control System for a Flexible Joints Robot
    An Evolutionary Intelligent Control System for a Flexible Joints Robot Peña, Alejandro; Tejada, Juan C.; Gonzalez, Juan; Sepulveda-Cano, Lina Maria; Chiclana, Francisco; Caraffini, Fabio; Gongora, Mario A. In this paper, we present a model for a serial robotic system with flexible joints (RFJ) using Euler–Lagrange equations, which integrates the oscillatory dynamics generated by the flexible joints at specific operating points, using a pseudo-Ornstein-Uhlembeck process with reversion to the mean. We also propose a Stochastic Flexible - Adaptive Neural Integrated System (SF-ANFIS) to identify and control the RFJ with two degrees of freedom. For the configuration of the model, we use two adaptive strategies. One strategy is based on the Generalised Delta Rule (GDR). In contrast, a second strategy is based on the EDA-MAGO algorithm (Estimation Distribution Algorithms - Multi-dynamics Algorithm for Global Optimisation), improving online learning. We considered three stages for analysing and validating the proposed SF-ANFIS model: a first identification stage, a second stage defined by the adaptive control process, and a final stage or cancellation of oscillations. Results show that, for the identification stage, the SF-ANFIS model showed better statistical indices than the MADALINE model in control for the second joint, which presents the greatest oscillations; among those that stand out, the IOA (0.9955), VG (1.0012) and UAPC2 (-0.0003). For the control stage, The SF-ANFIS model showed, in a general way, the best behaviour in the system’s control for both joints, thanks to the capacity to identify and cancel oscillations based on the advanced sampling that defines the EDA algorithm. For the cancellation of the oscillations stage, the SF-ANFIS achieved the best behaviour, followed by the MADALINE model, where it is highlighted the UAPC2 (0.9525) value. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link Peña, A., Tejada, J.C., Gonzalez, J., Sepulveda-Cano, L.M., Chiclana, F., Caraffini, F. and Gongora M.A. (2023) An Evolutionary Intelligent Control System for a Flexible Joints Robot. Applied Soft Computing, 135, 110043
  • Large-scale group consensus hybrid strategies with three-dimensional clustering optimization based on normal cloud models
    Large-scale group consensus hybrid strategies with three-dimensional clustering optimization based on normal cloud models Liu, Weiqiao; Zhu, Jianjun; Chiclana, Francisco Large-scale group decision-making (LSGDM) is characterised by a large number of experts and a complex consensus reaching process. Clustering is used to divide the large group into a number of manageable subgroups; however, the simultaneously presence of all subgroup members at the negotiation process is rare. Thus, the selection of subgroup representatives for a smooth negotiation is necessary. Few LSGDM consensus recommendation optimisation models truly consider the problems of subgroup representative selection in their strategy to reach consensus. This article proposes a LSGDM consensus hybrid strategy framework with three-dimension clustering optimisation based on normal cloud models (NCMs) whose aims are threefold: (1) the use of NCMs to represent the imprecision of linguistic preferences provided in real complex decision scenarios with large number of experts; (2) to establish a clustering optimisation method to choose subgroup representatives using three sensible criteria: preference similarity level within the subgroup, preference precision level, and preference consistency level; and (3) to establish two consensus recommendation optimisation strategies for individual negotiation-guided and moderator-guided consensus reaching, respectively. The feasibility and applicability of the proposed method are illustrated via a power curtailment policy assessment example, then some sensitive and comparative analyses are conducted to explicit the effectiveness and advantages of the proposed consensus hybrid strategies. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. Liu, W., Zhu, J. and Chiclana, F. (2023) Large-scale group consensus hybrid strategies with three-dimensional clustering optimization based on normal cloud models. Information Fusion.
  • A bargaining game based feedback mechanism to support consensus in dynamic social network group decision making
    A bargaining game based feedback mechanism to support consensus in dynamic social network group decision making Xing, Yumei; Wu, Jian; Chiclana, Francisco; Yu, Gaofeng; Cao, Mingshuo; Herrera-Viedma, Enrique A bargaining game is used to develop feedback mechanism for dynamic social networks group decision making (SN-GDM). The dynamic trust relationships between experts are updated by the change of their consensus state after each round of interaction. Then, a maximum entropy model based on individual interactive relationship and fairness is established to determine the comprehensive weight of each expert, which considers: (1) the individual weight by influence of expert; (2) the interaction weight by social relationships of experts. Hence, 2-tuple linguistic collective evaluation matrix of the 2-additive Choquet integral under Möbius transform is put forward. Further, the equilibrium solution of two experts in the bargaining game is established, and then this equilibrium recommendation will be accepted by both experts. Consequently, a bargaining game based feedback mechanism driven by trust relationship is proposed to reflect the interaction behaviors between the inconsistent expert and her/his most trusted consistent one, and therefore the recommendation advices are generated for them to promote consensus in SN-GDM. Finally, a sustainable supplier selection example demonstrates the effectiveness of the proposed approach. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link Xing, Y., Wu, j., Chiclana, F., Yu, G., Cao, M.and Herrera-Viedma, E. (2023) A bargaining game based feedback mechanism to support consensus in dynamic social network group decision making. Information Fusion, 93, May 2023, pp. 363-382
  • A mathematical programming method based on prospect theory for online physician selection under an R-set environment.
    A mathematical programming method based on prospect theory for online physician selection under an R-set environment. Tang, Guolin; Zhan, Xiaoyang; Zhu, Baoying; Seiti, Hamidreza; Chiclana, Francisco; Liu, Peide This study develops an R-mathematical programming method for multiple attribute group decision-making (MAGDM) problems with assessment values of alternatives and truth degrees of pairwise alternative comparisons represented by R-sets while the decision maker holds subjective bounded rationality. First, a novel scalar multiplication operation and defuzzification of R-sets are proposed to allow the use of R-sets in MAGDM problems. Subsequently, based on prospect theory and R-sets, a new technique is proposed to compute the individual overall prospect value of an alternative by simultaneously considering the positive ideal solution (PIS) and negative ideal solution (NIS). Additionally, the R-group consistency index (R-GCI) and R-group inconsistency index (R-GII) are defined using the individual overall prospect values of alternatives. The decision makers’ weights, attribute weights, PIS, and NIS are estimated by establishing a novel R-mathematical programming model, which is solved by the external archive-based constrained state transition, while the collective overall prospect values are computed to derive the final ranking order of alternatives. Thus, a new RLINMAP method is developed to solve MAGDM. A practical instance concerning online physician selection is provided with the corresponding sensitive and comparative analyses to verify the applicability, validity, and superiority of the developed method. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link. Tang, G., Zhan, X., Zhu, B., Seiti, H., Chiclana, F. and Liu, P. (2023) A mathematical programming method based on prospect theory for online physician selection under an R-set environment. Information Fusion,
  • An approach to prevent weight manipulation by minimum adjustment and maximum entropy method in social network group decision making
    An approach to prevent weight manipulation by minimum adjustment and maximum entropy method in social network group decision making Sun, Qi; Wu, Jian; Chiclana, Francisco; Wang, Sha; Herrera-Viedma, Enrique; Yager, Ronald R. In social network group decision making (SN-GDM) problem, subgroup weights are mostly unknown, many approaches have been proposed to determine the subgroup weights. However, most of these methods ignore the weight manipulation behavior of subgroups. Some studies indicated that weight manipulation behavior hinders consensus efficiency. To deal with this issue, this paper proposes a theoretical framework to prevent weight manipulation in SN-GDM. Firstly, a community detection based method is used to cluster the large group. The power relations of subgroups are measured by the power index (PI), which depends on the subgroups size and cohesion. Then, a minimum adjustment feedback model with maximum entropy is proposed to prevent subgroups’ manipulation behavior. The minimum adjustment rule aims for ‘efficiency’ while the maximum entropy rule aims for ‘justice’. The experimental results show that the proposed model can guarantee the rationality of weight distribution to reach consensus efficiently, which is achieved by maintaining a balance between ‘efficiency’ and ‘justice’ in the mechanism of assigning weights. Finally, the detailed numerical and simulation analyses are carried out to verify the validity of the proposed method. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link Sun, Q., Wu, J., Chiclana, F., Wang, S., Herrera-Viedma, E. and Yager, R.R. (2022) An approach to prevent weight manipulation by minimum adjustment and maximum entropy method in social network group decision making. Artificial Intelligence Review,


Click here to view a full listing of Francisco Chiclana's publications and outputs.

Key research outputs

F. Chiclana, E. Herrera-Viedma, S. Alonso, F. Herrera: Cardinal Consistency of Reciprocal Preference Relations: A Characterization of Multiplicative Transitivity. IEEE Transactions on Fuzzy Systems 17 (1), 14-23, February 2009. doi:10.1109/TFUZZ.2008.928597

S. -M. Zhou, F. Chiclana, R. I. John, J. M. Garibaldi: Type-1 OWA Operators for Aggregating Uncertain Information with Uncertain Weights Induced by Type-2 Linguistic Quantifiers. Fuzzy Sets and Systems 159 (24), 3281-3296, December 2008. doi:10.1016/j.fss.2008.06.018 

S-M. Zhou, F. Chiclana,R. John, J. M. Garibaldi: Alpha-Level Aggregation: A Practical Approach to Type-1 OWA Operation for Aggregating Uncertain Information with Applications to Breast Cancer Treatments. IEEE Transactions on Knowledge and Data Engineering 23 (10) 1455-1468, October 2011. doi: 10.1109/TKDE.2010.191

F. Herrera, E. Herrera-Viedma, S. Alonso, F. Chiclana: Computing with Words in Decision Making: Foundations, Trends and Prospects. Fuzzy Optimization and Decision Making 8, 337-364, 2009 (ISSN: 1568-4539). doi: 10.1007/s10700-009-9065-2

Patrizia Pérez-Asurmendi, F. Chiclana: Linguistic majorities with difference in support. Applied Soft Computing 18, May 2014, Pages 196–208. doi: 10.1016/j.asoc.2014.01.010

F. Chiclana, J. M. Tapia-Garcia, M. J. del Moral, E. Herrera-Viedma: A Statistical Comparative Study of Different Similarity Measures of Consensus in Group Decision Making. Information Sciences 221, 110-123, February 2013, doi: 10.1016/j.ins.2012.09.014

Jian Wu, F. Chiclana: A social network analysis trust-consensus based approach to group decision-making problems with interval-valued fuzzy reciprocal preference relations. Knowledge-Based Systems 59, March 2014, Pages 97–107. doi: 10.1016/j.knosys.2014.01.017

S. Greenfield, F. Chiclana, S. Coupland, R. I. John: The Collapsing Method of Defuzzification for Discretised Interval Type-2 Fuzzy Sets. Information Sciences 179(13), 2055-2069, June 2009. doi: 10.1016/j.ins.2008.07.011

S. Greenfield, F. Chiclana, R. John, S. Coupland: The Sampling Method of Defuzzification for Type-2 Fuzzy Sets: Experimental Evaluation. Information Sciences 189, 77-92, April 2012. doi: 10.1016/j.ins.2011.11.042

E. Herrera-Viedma, F. Herrera, F. Chiclana , M. Luque: Some Issues on Consistency of Fuzzy Preference Relations. European Journal of Operational Research 154(1), 98-109, April 2004. doi:10.1016/S0377-2217(02)00725-7

F. Chiclana, F. Herrera, E. Herrera-Viedma: Integrating Three Representation Models in Fuzzy Multipurpose Decision Making Based on Fuzzy Preference Relations. Fuzzy Sets and Systems 97(1), 33-48, July 1998. doi:10.1016/S0165-0114(96)00339-9 

Research interests/expertise

Fuzzy preference modelling, decision making problems with heterogeneous fuzzy information, decision support systems, the consensus reaching process, recommender systems, social networks, modelling situations with missing/incomplete information, rationality/consistency, intelligent mobility and aggregation of information. 

Areas of teaching

I have a lot of teaching experience that I have acquired over the past 21 years as a secondary school teacher of mathematics (Granada, Montoro-Cordoba, Estepona and Mabella - Malaga) in Spain (September 1990 - July 2003), and at De Montfort University (August 2003 - present) lecturing different modules at undergraduate, postgraduate (MSc) and PhD levels (see list below). Previously, I worked as a temporary lecturer at the Department of Algebra, University of Granada, in Spain (January 1990-March 1990) teaching calculus and financial mathematics to first year students of management studies.

In June 2005, I completed the HEA accredited programme for staff new to teaching in Higher Education which entitled me to registered practitioner status of the Higher Education Academy. Certificate presentation was on 28th September 2005 by the Director of Human Resources. I was glad to have Dr Jenny Carter as my mentor during my first 2 years at DMU. Currently, I am a fellow of the Higher Education Academy.

I was nominated by students for a Vice-Chancellor's Distinguished Teaching Award in 2009. The students think highly of me and my contribution to the student experience is valued as the following quotation testifies:

"He willingly devotes time to listen to any student and has helped me to achieve good mark. He is consistently excellent communicator, stimulating and informative..."         

 

Areas of Teaching:
  • Mathematics for Computing
  • Financial Mathematics
  • Statistics
  • Research Methods
  • Fuzzy Logic

 

Qualifications

  • Certificate Successful completion of HEA accredited pathway for staff new to teaching in Higher Education, De Montfort University, Leicester, UK (September 2005)
  • Outstanding Award for a PhD in Mathematics for the academic year 1999/2000, University of Granada, Spain (27 November 2002)
  • PhD in Mathematics (Distinction Cum Laude), Department of Computer Science and Artificial Intelligence, University of Granada, Spain (24 March 2000)
  • Public examination to become part of government civil service as a secondary school teacher, Ministry of Education and Science, Spanish Government (July 1990)
  • Degree in Mathematics (Statistics & Operational Research), University of Granada, Spain (1984-1989)
  • Certificate of Pedagogic Aptitude, Institute of Educational Science, University of Granada, Spain (1989).

Courses taught

Undergraduate

CSCI1004 - Mathematics for Computing (2003-2004)
MGSC1102 - Modelling for Management Decisions 1 (2003-2004)
INFO1007 - Introduction to Business Computing (2003-2004)
INFO1407 - Introduction to Business Computing (2004-2007)
MATH2211 - Information Systems (2003-2005)
COMP2006 - Research in Computing (2004-2008)
CSCI1412 - Computer Technology (2007-2010)
Industrial Placement Visit Tutor (2003-2012)
IMAT1901: Quantitative Methods (2010-2012)
IMAT2701: HND BIT Project (2009-2012)
IMAT3451 - Final Year Project Supervisor (2003-2012)

Postgraduate

IMAT5119 - Fuzzy Logic (2004-2012)
IMAT5120 - Research Methods (2004-2012)
IMAT5314 - MSc Project (2010-2012)

PhD Level

PhD Course: Typesetting Documents with LaTeX (2004-2012)  

Honours and awards

Outstanding Award for a PhD in Mathematics for the academic year 1999/2000, University of Granada, Spain (27 November 2002).

Third prize in DMU’s Creative Thinking Awards 2010, for the Greenfield-Chiclana Collapsing Defuzzifier.

Finalist for 1st DMU - THE OSCAR AWARDS  in category: Outstanding Contribution to Research Excellence (2012).

Membership of external committees

Fellow of the Higher Education Academy, UK

Member of the European Society for Fuzzy Logic and Technology (EUSFLAT) 

Current research students

Current:

  • Maria Raquel Ureña Perez, University of Granada (Spain)- Department of Computer Science and Artificial Intelligence (DECSAI), University of Granada. January 2012. Co-supervisor: Prof. Enrique Herrera-Viedma
  • Manal Alghieth (DMU) - Second supervisor. First supervisor: Dr Yingjie Yang (CCI). Mode of study: Full -time on site (01/04/2012)
  • Simon Witheridge (DMU) - Intelligent Transport Systems: Integrated Traffic Management Control. First supervisor. Second supervisors: Dr Benjamin Passow (DIGITS) and Dr David Elizondo (DIGITS). Mode of study: Full -time on site (01/10/2012). Change to second supervisor and Ben Passow first supervisor from 01-October-2013.
  • Eseosa Oshodin (DMU) - Decentralised Mechanism for REcommender/Reputation System: A Case Study on Trust. First supervisor. Second supervisors: Dr Samad Ahmadi (VirAL/CCI). Mode of study: Full -time on site (01/10/2013).
  • Salim Hasshu (DMU) - Smart, Green and Integrated Transport - Personalised traffic health planner. First supervisor. Second supervisors: Dr Benjamin Passow (DIGITS) and Dr David Elizondo (DIGITS). Mode of study: Full -time on site (01/10/2013).

Completed:

  • Dr Sergio Alonso Burgos, University of Granada (Spain)- Group Decision Making With Incomplete Fuzzy Preference Relations. Department of Computer Science and Artificial Intelligence (DECSAI), University of Granada. May 2006. Co-supervisors: Prof. Enrique Herrera-Viedma, Prof. Francisco Herrera.
  • Dr Fahad Alshathry (DMU) - Building a Decision Support System to integrate digital evidence with interview investigation. Second supervisor. August 2011. First supervisor: Dr Giampaolo Bella (STRL).
  • Dr Sarah Greenfield (DMU) - Type-2 Fuzzy Logic: Circumventing the Defuzzification Bottleneck. First supervisor. Second supervisors: Prof. Robert I. John and Dr Simon Coupland (CCI). May 2012.
  • Tamas Galli (MPhil DMU) - Fuzzy Logic Based Software Product Quality Models by Execution Tracing. First supervisor. Second supervisor: Dr Jenny Carter (CCI). Technical adviser: Helge Janicke (STRL). Mode of study: Part -time distance International PhD Programme (01/03/2011). February 2014.

Externally funded research grants information

  • Awarded Campus de Excelencia GENIL-BioTIC-UGR Research Visit Grant (1 week) by the University of Granada (Spain). Principal Investigator. €1000. Period: February 2014.
  • Awarded Campus de Excelencia GENIL-BioTIC-UGR Research Visit Grant (1 week) by the University of Granada (Spain). Principal Investigator. €1200. Period: June 2012.
  • Awarded University of Granada Research Visit Grant by the Regional Government of Andalucia (Spain). Principal Investigator. €3184. Period: June 2009 - August 2009.
  • Awarded research funding from the EPSRC for a 3 year projet, which extends my previous work investigating the role of fuzzy logic in aggregation and consensus modelling. Towards a Framework for Modelling Variation, EPSRC, UK, Co-investigator. £145K. Period: 2006 - 2009.
  • Awarded a Royal Academy of Engineering grant support towards my research networking visit to Spain. 2009.
  • Awarded 2 Conference Grants (Royal Society and Royal Academy of Engineering) to disseminate my research findings at IPMU 2006 and FUZZ-IEEE 2008.
  • External research collaborator in Spanish Government Research Projects lead by my collaborators.
  • Linguistic Information in Decision Making Analysis Processes. Preference Modelling and Applications. Spanish Department for Education and Culture, Co-investigator. €91K. Period: 01/01/2010 to 31/12/2012.  
  • Project of Excellence: Developing the Fuzzy Linguistic Model and its Use in WEB Applications. Regional Government of Andalucia (Spain), Co-investigator. €187K. Period: 01/01/2009 to 31/12/2013.
  • Decision Models with Uncertainty in Heterogeneous Contexts. Application to Evaluation Processes in On-line Environments. Spanish Department for Education and Culture, Co-investigator. €50K. Period: 01/01/2007 to 31/12/2009.
  • Project of Excellence: Development of WEB Information Access Systems Based on Artificial Intelligence Techniques (SAINFOWEB). Regional Government of Andalucia (Spain), Co-investigator. €50K. Period: 01/01/2005 to 31/12/2008.
  • An Information System for the Quality of Aerial Transportation Based on Artificial Intelligence Techniques and Oriented Towards the Citizen. Spanish Department of Transport, Co-investigator. €96K. Period: 01/01/2005 to 31/12/2008.
  • Flexible Preference Modelling in Decision Making. Applications in online recommender systems (I) and (II). Spanish Department for Education and Culture, Co-investigator. €33K. Period: 01/01/2003 to 31/12/2006.
  • Spanish National Network in Decision Making, Preference Modelling and Aggregation (I) and (II). Spanish Department for Education and Culture, Co-investigator. €30K. Period: 01/01/2004 to 31/12/2006.
  • Similarities Between Physics and Mathematics in Secondary Education. Regional Government of Andalucia (Spain), Principal Investigator. €700. Period: 01/09/2002 to 30/06/2003.

 

Internally funded research project information

  • Awarded DMU Research Scholarship 2013-14 scheme for 3 years starting from October 2013. This scheme provides for funding to cover both fees and stipend equivalent to the RCUK standard rate (£13,770 for 2012-13) to support one research student from UK or EU. (Principal Investigator with Dr David Elizondo and Dr Benjamin Passow - DIGITS).
  • Awarded DMU Research Scholarship 2012-13 scheme for 3 years starting from October 2012.  This scheme provides for funding to cover both fees and stipend equivalent to the RCUK standard rate (£13,770 for 2012-13) to support one research student from UK or EU. (PI with Dr David Elizondo and Dr Benjamin Passow - DIGITS).
  • Awarded DMU Revolving Investment Fund (RIF) for Research for the project DIGITS: De Montfort Interest Group In Transport Systems. Principal Investigator. £10K. Period: January 2012 - July 2012. 
  • Awarded £4K under the Faculty of Computing Sciences and Engineering (DMU) Pump Priming initiative to promote external collaborations at the University of Granada and the University of Jaen in Spain. 2005.

Professional esteem indicators

Associate Editor and Editorial Board

International journals in ISI Web of Knowledge

International journals not in ISI Web of Knowledge

Guest Editor for international journals in ISI

  • "FUZZY APPROACHES IN PREFERENCE MODELLING, DECISION MAKING AND APPLICATIONS" in the International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems (IJUFKS), Volume 16, Issue 2 Supp. August 2008. F. Chiclana, E. Herrera-Viedma, S. Alonso, F. Herrera (Eds.).
  • "COMPUTING WITH WORDS IN DECISION MAKING" in the International Journal of Fuzzy Optimization and Decision Making Journal, Volume 8, Number 4 / December 2009. F. Herrera, E. Herrera-Viedma, S. Alonso and F. Chiclana (Eds.). 

Research Council Reviewer and External Examiner

UK

  • EPSRC
  • The Royal Society

International

  • The Research Foundation - Flanders (Belgium) (Fonds Wetenschappelijk Onderzoek - Vlaanderen, FWO)
  • The Romanian National Council for Development and Innovation
  • Portuguese Foundation for Science and Technology (FCT)
  • Austrian Science Fund (FWF)
  • Netherlands Organisation for Scientific Research, Division of Social Sciences.

PhD external examiner

  • Univ. Granada (Granada, Spain)
  • Univ. Jaén (Jaén, Spain)
  • Ulster University (Belfast, UK)
  • University of Valladolid (Valladolid, Spain)
  • École Supérieure d'Électricité (SUPÉLEC, Paris, France).

Conference Organisation, Plenary Talks and Invited Lectures

Organised and Chaired special sessions in the following international conferences:  

  • Special Session FZ08: Fuzzy decision-making: Consensus and Missing Preferences in FUZZ-IEEE 2014 - Beijing (China) that will be held as part of the WCCI2014 from 6-11 July 2014.
  • Special Session 04: Fuzzy Preference Modelling, Decision Making and Consensus in the Second International Conference on Information Technology and Quantitative Management (ITQM2014) that will be held in Moscow - Russia from 3-5 June 2014.
  • Focus Session on Consensus and Decision Making Under Uncertainty in the 2013 IFSA World Congress NAFIPS Annual Meeting Edmonton, Canada June 24-28, 2013.
  • Special Session on Fuzzy Preference Modelling, Decision Making and Consensus in first International Conference of Information Technology and Quantitative Management (ITQM 2013), May 16-18, 2013 at Suzhou, China.
  • Special Session on "Fuzzy Approaches in Preference Modelling, Decision Making and Applications" for the IEEE International Conference on Fuzzy Systems (FUZZ_IEEE), London, UK (2007).
  • Special Session on "Soft Decision Making - Theory and Applications" for the IEEE International Conference on Fuzzy Systems (FUZZ_IEEE), Hong-Kong, China (2008).
  • Special Session on "Fuzzy Decision Making Issues: Preference Modelling and Aggregation" for the 8th International FLINS Conference on Computational Intelligence in Decision and Control, Madrid, Spain (2008).
  • Organised Workshop on "Type-2 Fuzzy Logic and the Modelling of Uncertainty" at the AI-2007 Twenty-seventh SGAI International Conference on Artificial Intelligence, Cambridge, UK.
  • Plenary talk at the 2009 EUROFUSE Workshop on Preference Modelling and Decision Analysis.
  • Invited Lectures at the University of Granada, the University of Pamplona, the University of Valladolid, the University of Castilla-La Mancha in Albacete, the University of Jaen (Spain), Ghent University (Belgium) and University of Portsmouth (UK).
  • Programme committee member of more than 50 international conferences.
Francisco-Chiclana