Skip to content

Dr Andrew Wright

Job: Reader in Building Engineering Physics

Faculty: Computing, Engineering and Media

School/department: School of Engineering and Sustainable Development

Research group(s): Institute of Energy and Sustainable Development (IESD)

Address: De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom

T: +44 (0)116 257 7960

E: awright@dmu.ac.uk

W: www.dmu.ac.uk/research/centres-institutes/iesd/index.aspx

Social Media:

 

Personal profile

Andrew Wright is a Reader and joined the Institute in September 2004. He is Subject Group Leader for teaching of Energy and Sustainable Develoment. Research interests include low energy buildings, energy in industry, and renewable energy in the developing world.

Following a degree in Applied Maths at Sheffield, he took an MSc in Atmospheric Physics at Imperial College, London, and for his PhD investigated computer modelling of the thermal performance of industrial buildings. Before coming to De Montfort, Andrew was the Programme Manager of a distance learning MSc course in Sustainable Electrical Building Services at UMIST (now University of Manchester), where he was also a researcher in the Tyndall (North) Centre for Climate Change Research. He has previously worked for the UK Electricity Industry at EA Technology Ltd near Chester; Newcastle University; and the Building Design Partnership in Manchester.

He has written many journal papers relating to energy use in buildings, and numerous reports for EA Technology ranging from the energy impacts of teleworking, to the effect of distributed generation on the electricity network. Andrew is a Fellow of the Chartered Institute of Building Services Engineers, and a member of the Energy Institute. He has contributed to the design guides on Environmental Design (Volume A) and Weather (Volume J), and is a member of the Schools Design Group. He has also contributed to reports for Ofgem,  DECC and the Department of Health.

Research group affiliations

Institute of Energy and Sustainable Development

Publications and outputs

  • Assessing the efficacy of passive measures for the tropical context of Mauritius through parametric simulations and in-situ measurement
    Assessing the efficacy of passive measures for the tropical context of Mauritius through parametric simulations and in-situ measurement GOOROOCHURN, MAHENDRA; Coret, Jonathan Yannick; Brown, Neil; Santaram, Venkannah; Wright, A. J. The transition from the traditional creole typology to the modern concrete vernacular structures has taken place progressively over the past few decades in Mauritius, motivated by the need for cyclone resistant buildings. However, the lack of consideration for thermal properties of the wall, glazing and roof construction has resulted in interior space conditions generally uncomfortable during summer conditions, evidenced by the increasing installation and use of air conditioning systems. With summers projected to become warmer due to climate change, passive design measures should be re-incorporated into existing and new constructions to decouple active cooling and urbanisation. This paper describes the parametric analyses carried out to generate cooling load (peak and coincident) for wall, glazing and roof components and temperature (operative, radiative and air) variations for a test building model made up of nine rooms, of which eight were peripheral and one central (with no external walls). The simulations were undertaken in Designbuilder® for a base case with no passive measures and for various low cost passive measures – overhang of various depths, external vertical shading and curtains, roof shading and planting tall trees around the building, incrementally rotated. The results allowed to assess the efficacy of each passive measure, validated against experimental data collected in actual buildings. The study also provided much needed quantitative data on surface and air temperatures prevailing inside buildings, which are key to bringing about the needed shift in mindset and the construction market. This paper was written by staff at the University of Mauritius and DMU.
  • Energy, economic and emission assessment of a solar assisted shallow earth borehole field heat pump system for domestic space heating in a north European climate
    Energy, economic and emission assessment of a solar assisted shallow earth borehole field heat pump system for domestic space heating in a north European climate Wright, A. J.; Sakellariou, Evangelos; Axaopoulos, Petros The performance of a solar assisted ground source heat pump (SAGSHP) system was evaluated and compared with a conventional gas boiler system using simulation, for a central England location. The earth energy bank was the long-term heat store element of the system and consisted of a very shallow field (1.5 m deep) of borehole heat exchangers (BHE). The mathematical model of the system was formulated, and parametric analyses were carried out by varying the number of BHEs and their spacing. The energy performance was expressed using four energy metrics, while its economy and CO2e emissions were compared with a natural gas boiler (NGB) system via the life cycle cost method and the fractional CO2e savings, respectively. The system can be energy self-sufficient by installing 40 BHEs at 1.25 m spacing or with 32 BHEs at 1.5 m spacing. The NGB system appears more economic than the SAGSHP system, due to low natural gas prices, the high price of the imported electricity, the low price of the exported electricity and the higher capital cost of the SAGSHP system. However, the SAGSHP system was found to have net negative carbon emissions, in contrast to the high positive emissions of the NGB system. This work was based on the PhD of Sakellariou (also on DORA) The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.
  • Keeping Cool in the Desert: Using Wind Catchers for Improved Thermal Comfort and Indoor Air Quality at Half the Energy
    Keeping Cool in the Desert: Using Wind Catchers for Improved Thermal Comfort and Indoor Air Quality at Half the Energy Saif, Jamal; Wright, A. J.; Khattak, Sanober; Elfadli, Kasem In hot arid climates, air conditioning in the summer dominates energy use in buildings. In Kuwait, energy demand in buildings is dominated by cooling, which also determines the national peak electricity demand. Schools contribute significantly to cooling demand, but also suffer from poor ventilation. This paper presents analysis of a ventilation and cooling system for school classrooms using a wind catcher for natural ventilation and evaporative cooling. A school classroom in Kuwait with single-sided ventilation was modelled using the DesignBuilder V5.4/EnergyPlus V9.1 software and calibrated using field data. The model was used to analyse the performance of a wind catcher, with and without evaporative cooling, in terms of energy use, thermal comfort and indoor air quality. Compared to the baseline of using air-conditioning only, a wind catcher with evaporative cooling was found to reduce energy use by 52% during the summer months while increasing the comfortable hours from 76% to 100% without any supplementary air conditioning. While the time below the ASHRAE CO2 limit also improved from 11% to 24% with the wind catcher, the indoor air quality was still poor. These improvements came at the cost of a 14% increase in relative humidity. As the wind catcher solution appears to have potential with further development; several avenues for further research are proposed. open access article
  • The potential for the passive house standard in Longyearbyen – The high arctic
    The potential for the passive house standard in Longyearbyen – The high arctic Buijze, Josien; Wright, A. J. Passive building design reduces a building’s energy consumption through mainly non-mechanical design strategies. The Passive House (or Passivhaus) Standard certifies such buildings that comply with its strict energy performance criteria. Achieving the Standard is very challenging for dwellings in extreme climates. There is limited knowledge of the Standard’s potential in Arctic regions, particularly the High Arctic. Through a review of the literature and energy modelling of a hypothetical dwelling, the challenges in achieving the Standard in Longyearbyen (78˚N), Norway are investigated. Very low temperatures and 112 days without daylight create a high heating demand. Whereas previous studies measured actual building performances or used simple calculations, the findings in this investigation show the limitations of individual design parameters and technical limits of the building envelope. In theory the Standard can be achieved in Long-yearbyen; however, the potential in practice is low due to the very tight margins in the heating criteria. The results show the significant impact of applying contextual (climatic) adjustments to the boundary conditions of the Standard. The investigation could contribute to a discussion on modifying the Passive House Standard for dwellings in the High Arctic and improving building design for the region. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.
  • Energy and economic evaluation of a solar assisted ground source heat pump system for a north Mediterranean city
    Energy and economic evaluation of a solar assisted ground source heat pump system for a north Mediterranean city Wright, A. J.; Sakellariou, Evangelos; Axaopoulos, Petros In this study, a PVT based solar assisted ground source heat pump (SAGSHP) system was investigated regarding its energy performance and cost-effectiveness for the city of Thessaloniki (Greece). The SAGSHP system was set up to cover the space heating and domestic hot water needs for a low-rise dwelling. A mathematic model of the system was formulated in TRNSYS was used with the aim to carry out parametric analysis by varying the number of the PVTs. Two of the most important components of the employed model, the PVT collector and the geothermal heat exchanger, have already been validated via experimental data. Simulations were conducted and through the results seven energy metrics were estimated, with the objective to examine the system’s energy performance from various perspectives. The SAGSHP system with 16 PVTs was found capable of covering 73 % of the heating load and to generate 1.22 times more electricity than that consumed by the system. The electricity yield of PVTs was not affected throughout the parametric analysis, and the maximum specific productivity was estimated at 301.5 kWhe PVT-1 per year. The results suggest that a SAGSHP system equipped with about 14 PVTs can reach energy self-sufficiency. As regards the economics of the SAGSHP system, this was compared with a natural gas boiler system via two methods: life cycle cost (LCC) and life cycle savings (LCS). A sensitivity analysis with major economic parameters of the systems was carried out. It was found that the cost-effectiveness of the SAGSHP system is influenced mainly by its capital cost and by the price of the natural gas. Systems equipped with less than 12 PVTs can be cost-competitive by subsiding from 8 % up to 42 % of their capital cost. Also, system with more than 12 collectors were found of more benefit than the smaller ones, in the case where feed-in-tariff schemes are applied, or the bank loan’s interest rate is low. It can be concluded that, the proposed system can be an attractive monetary solution for covering the heating load in comparable dwellings with a similar climate to Thessaloniki. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.
  • An investigation into overheating in social housing dwellings in central England
    An investigation into overheating in social housing dwellings in central England Morey, Joanna; Beizaee, Arash; Wright, A. J. Recent empirical studies have evidenced overheating in UK dwellings during hotter periods. Vulnerable people living in social housing dwellings may be less able to tolerate heat stress or to adapt. This study is the first large scale monitoring study to investigate overheating risk in social housing dwellings in central England against three overheating risk assessment criteria. Indoor temperature data for summer 2015 were analysed for 122 free-running social housing properties, of varying type and age, against the Chartered Institution of Building Services Engineers (CIBSE) static guidance, and the adaptive methods of TM52 and TM59. The mean bedroom and living room temperatures were 21.2°C and 21.7°C, respectively. Bedrooms were more likely to overheat than living rooms using the static criteria, with 42% of bedrooms exceeding 5% of occupied hours over 24°C, and 40% exceeding 1% of occupied hours over 26°C. 24% of living rooms exceeded 5% of occupied hours over 25°C, and 5% exceeded 1% of occupied hours over 28°C. Against TM52, only 1% of bedrooms and 2% of living rooms overheated. Against TM59, 5% of bedrooms and 1% of living rooms overheated. Analysis by various property categories identified those types of property which were more prone to overheating. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.
  • PVT based Solar Assisted Ground Source Heat Pump system: modelling approach and sensitivity analyses
    PVT based Solar Assisted Ground Source Heat Pump system: modelling approach and sensitivity analyses Sakellariou, Evangelos; Wright, A. J.; Axaopoulos, Petros; Oyinlola, M. A. A solar assisted ground source heat pump (SAGSHP) system is a promising technology which pairs two widely abundant renewable energy sources, solar and shallow geothermal. In space heating dominated regions, the addition of solar collectors to conventional ground source systems improves their feasibility. There are many aspects which influence the system’s efficiency; but experimentation to optimize these would requires high capital investment and take a very long time. Therefore, mathematical modeling and computer-based simulations are preferable methods to conduct sensitivity and feasibility analyses. In this work, a PVT based solar assisted ground source heat pump system was modeled using TRNSYS program, and sensitivity analyses were conducted. For the PVT collectors, an experimentally verified transient model was utilized, while experimental data were used to validate a novel very shallow borefield. For the heat pump model, manufacturer’s performance data along with a new novel method were combined, and a new component was created in the simulation platform. A single family dwelling with domestic hot water demand was assumed for the heating load, and weather data from Birmingham, West Midlands, UK was used. The simulation results were evaluated by utilizing the annual specific productivity metric rather than the systems seasonal performance factor, which is the current choice for SAGSHP systems. The proposed evaluation approach was found be capable of clarifying, in detail, the effect of the parametric variation on the system’s energy performance. The sensitivity analyses are focused on six parameters on the energy conversion side, with the heat pump’s evaporator as the physical boundary. It was found that the storage capacity and the plate heat exchanger’s effectiveness, contribute the most to the system’s and PVTs’ heat productivity. Whilst heat productivity depended more on the parameters’ variation, the power generation was influenced mainly by the collectors’ tilt. The results of this study are significant for design and operation of these systems. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.
  • Application of the superposition technique in conduction heat transfer for analysing arrays of shallow boreholes in ground source heat pump systems
    Application of the superposition technique in conduction heat transfer for analysing arrays of shallow boreholes in ground source heat pump systems Naranjo-Mendoza, Carlos; Wright, A. J.; Oyinlola, M. A.; Greenough, R. M.
  • Thermal Analysis of an Earth Energy Bank
    Thermal Analysis of an Earth Energy Bank Naranjo-Mendoza, Carlos; Sakellariou, Evangelos; Wright, A. J.; Oyinlola, M. A.; Greenough, R. M.
  • Experimental study of a domestic solar assisted ground source heat pump with seasonal underground thermal storage through shallow boreholes
    Experimental study of a domestic solar assisted ground source heat pump with seasonal underground thermal storage through shallow boreholes Greenough, R. M.; Naranjo-Mendoza, Carlos; Oyinlola, M. A.; Wright, A. J. With the current need to reduce carbon emissions, new technologies have been developed in recent years to satisfy building thermal demands. Among others, ground-source heat pumps (GSHP) have been implemented, in both commercial and residential applications, to meet heating and cooling needs in a cleaner and more energy efficient way. Likewise, solar thermal systems have been integrated into conventional GSHP systems to reduce the size of the ground heat exchanger and provide seasonal heat storage. So far, this technology has been used in large commercial or residential buildings, mainly due to its high installation costs. This paper describes a study of an experimental Solar Assisted Ground Source Heat Pump (SAGSHP) system for domestic heating applications. The system uses an array of shallow (1.5-metre deep) vertical boreholes to store heat seasonally in an underground ‘earth energy bank’. The results show that after 19 months of operation the system was able to show a good performance in order to cover the space heating requirements of the building in winter. Likewise, it was evidenced that the solar energy injected in the ground is useful not only to recover the soil from the thermal imbalance but also to store heat. Results also highlighted the need to improve the control strategy, mainly to avoid excessive inlet fluid temperatures at the evaporator. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.

Click here for a full listing of Andrew Wright's publications and outputs.

Key research outputs

Qiu, Z., Ma, X., Li, P., Zhao, X., and Wright, A. (2017) Micro-encapsulated phase change material (MPCM) slurries: Characterization and building applications. Renewable and Sustainable Energy Reviews, 77, pp. 246–262

Naranjo-Mendoza, C., Oyinlola, M., Wright, A. and Greenough, R. (2018) A comparison of analytical and numerical model predictions of shallow soil temperature variation with experimental measurements. Geothermics, 76, pp. 38-49.

Mendoza, C., Oyinlola, M., Wright, A. and Greenough, R. (2019) Experimental study of a domesticsolar assisted ground source heatpump with seasonal underground thermal storage through shallowboreholes. Applied Thermal Engineering

Naranjo-Mendoza, C., Greenough, R.M. and Wright, A.J. (2018) Are shallow boreholes a suitable option for inter-seasonal ground heat storage for the small housing sector?. In: Proceedings of the IGSHPA Research Track 2018, 18th - 20th September 2018, Stockholm, Sweden.

Wright AJ and Firth S, The nature of domestic electricity-loads and effects of time averaging on statistics and on-site generation calculations, Applied Energy, Vol 84, pp 389-403, (2007), ISSN: 0306-2619

Shipworth M, Firth SK, Gentry MI, Wright AJ, Shipworth DT & Lomas KJ (2009), Central heating thermostat settings and timing: building demographics, Building Research & Information, Vol 38, Iss 1, pp 50-69

Research interests/expertise

Energy in buildings and thermal storage, modelling, monitoring and climate change in relation to buildings, retrofit.

Areas of teaching

Low carbon energy, sustainable buildings, research skills.

Qualifications

BSc Applied Maths, MSc Atmospheric Physics, PhD

Courses taught

Building physics, Sustainable Energy, Sustainable Buildings, Research Methods. (IESD MSc courses).

Honours and awards

British Science Association Media Fellow 2011

Membership of external committees

CIBSE: Member of Schools design group

Membership of professional associations and societies

Fellow of CIBSE

Member of the Energy Institute, 2013

Professional licences and certificates

Chartered Engineer 1988 -

Projects

SAVES2 - Students Achieving Valuable Energy Savings 2. This EU project is helping students to save energy and reduce exposure to fuel poverty. It incorporates two strands that engage with students living in university accommodation (Student Switch Off) and in the private-rented sector (SAVES). 

Conference attendance

International Conference on Energy, Environment and Economics (ICEEE2019) 20-22 August 2019, Edinburgh Conference Centre, Heriot-Watt University, Riccarton, Edinburgh.

Wright, A.J., Korolija I., Zhang Y. Optimization of dwelling design under current and future climates using parametric simulations in EnergyPlus, CIBSE Technical Symposium- Delivering Buildings that are truly fit for purpose, Liverpool, April 2013.

A. J. Wright, M.R Oates, R. Greenough. Concepts for dynamic modeling of energy-related flows in manufacturing, Applied Energy Conference, Suzhou, China, July 2012.

Consultancy work

Academic lead on Knowledge Transfer Partnership with York Teaching Hospital NHS Foundation Trust (2011 – 2013).

Current research students

Student

Mode

Role

Carlos Naranjo-Mendoz

Full-time 2nd

Evangelos Sakellariou

Full-time 1st

Alfonso Senatore

Part-time 1st

Jamal Saif

Full-time 1st 

Externally funded research grants information

Projects lead on:

LESSONS project, TSB, collaborative research, April 2010 – March 2013, PI for DMU work, Pick Everard, Vanguard Homes Ltd., IES

THERM, TSB, collaborative research, Sep 2008 – Aug 2010, CI, Toyota, Airbus, IES

Retrofit for the Future, TSB, 6 projects, 2009-2012, East Midland Housing, Newcastle City Council, Vanguard Homes, PI for DMU work.

Closing the Gap, i_net, PI, Jeld Wen UK Ltd, Vanguard Homes, Nottingham Trent University, 2010.

Professional esteem indicators

Journal Refereeing information:

Mainly: Energy and buildings; Building and Environment; Building Services Research Information and Technology; Applied Energy; Building Services Engineering Research & Technology.

Case studies

Work on our Retrofit for the Future project (reported on TV and other media) is influencing retrofit and new build thinking for East Midlands Housing Group.

Advising on development of a ‘solar house’ which stores solar heat energy from the summer underground, and uses it to heat the house during the winter. This is under construction in Great Glen near Leicester by Caplin Homes.  I was interviewed about this on Radio Leicester in March and it featured in the Leicester Mercury.

andrew-wright-200x300-img