Dr Andrew Wright

Job: Reader in Building Engineering Physics

Faculty: Technology

School/department: School of Engineering and Sustainable Development

Research group(s): Institute of Energy and Sustainable Development (IESD)

Address: De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom

T: +44 (0)116 257 7960

E: awright@dmu.ac.uk

W: www.dmu.ac.uk/research/centres-institutes/iesd/index.aspx

Social Media:

 

Personal profile

Andrew Wright is a Reader and joined the Institute in September 2004. He is Subject Group Leader for teaching of Energy and Sustainable Develoment. Research interests include low energy buildings, energy in industry, and renewable energy in the developing world.

Following a degree in Applied Maths at Sheffield, he took an MSc in Atmospheric Physics at Imperial College, London, and for his PhD investigated computer modelling of the thermal performance of industrial buildings. Before coming to De Montfort, Andrew was the Programme Manager of a distance learning MSc course in Sustainable Electrical Building Services at UMIST (now University of Manchester), where he was also a researcher in the Tyndall (North) Centre for Climate Change Research. He has previously worked for the UK Electricity Industry at EA Technology Ltd near Chester; Newcastle University; and the Building Design Partnership in Manchester.

He has written many journal papers relating to energy use in buildings, and numerous reports for EA Technology ranging from the energy impacts of teleworking, to the effect of distributed generation on the electricity network. Andrew is a Fellow of the Chartered Institute of Building Services Engineers, and a member of the Energy Institute. He has contributed to the design guides on Environmental Design (Volume A) and Weather (Volume J), and is a member of the Schools Design Group. He has also contributed to reports for Ofgem,  DECC and the Department of Health.

Research group affiliations

Institute of Energy and Sustainable Development

Publications and outputs 

  • An investigation into overheating in social housing dwellings in central England
    An investigation into overheating in social housing dwellings in central England Morey, Joanna; Beizaee, Arash; Wright, A. J. Recent empirical studies have evidenced overheating in UK dwellings during hotter periods. Vulnerable people living in social housing dwellings may be less able to tolerate heat stress or to adapt. This study is the first large scale monitoring study to investigate overheating risk in social housing dwellings in central England against three overheating risk assessment criteria. Indoor temperature data for summer 2015 were analysed for 122 free-running social housing properties, of varying type and age, against the Chartered Institution of Building Services Engineers (CIBSE) static guidance, and the adaptive methods of TM52 and TM59. The mean bedroom and living room temperatures were 21.2°C and 21.7°C, respectively. Bedrooms were more likely to overheat than living rooms using the static criteria, with 42% of bedrooms exceeding 5% of occupied hours over 24°C, and 40% exceeding 1% of occupied hours over 26°C. 24% of living rooms exceeded 5% of occupied hours over 25°C, and 5% exceeded 1% of occupied hours over 28°C. Against TM52, only 1% of bedrooms and 2% of living rooms overheated. Against TM59, 5% of bedrooms and 1% of living rooms overheated. Analysis by various property categories identified those types of property which were more prone to overheating. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.
  • PVT based Solar Assisted Ground Source Heat Pump system: modelling approach and sensitivity analyses
    PVT based Solar Assisted Ground Source Heat Pump system: modelling approach and sensitivity analyses Sakellariou, Evangelos; Wright, A.J.; Axaopoulos, Petros; Oyinlola, M. A. A solar assisted ground source heat pump (SAGSHP) system is a promising technology which pairs two widely abundant renewable energy sources, solar and shallow geothermal. In space heating dominated regions, the addition of solar collectors to conventional ground source systems improves their feasibility. There are many aspects which influence the system’s efficiency; but experimentation to optimize these would requires high capital investment and take a very long time. Therefore, mathematical modeling and computer-based simulations are preferable methods to conduct sensitivity and feasibility analyses. In this work, a PVT based solar assisted ground source heat pump system was modeled using TRNSYS program, and sensitivity analyses were conducted. For the PVT collectors, an experimentally verified transient model was utilized, while experimental data were used to validate a novel very shallow borefield. For the heat pump model, manufacturer’s performance data along with a new novel method were combined, and a new component was created in the simulation platform. A single family dwelling with domestic hot water demand was assumed for the heating load, and weather data from Birmingham, West Midlands, UK was used. The simulation results were evaluated by utilizing the annual specific productivity metric rather than the systems seasonal performance factor, which is the current choice for SAGSHP systems. The proposed evaluation approach was found be capable of clarifying, in detail, the effect of the parametric variation on the system’s energy performance. The sensitivity analyses are focused on six parameters on the energy conversion side, with the heat pump’s evaporator as the physical boundary. It was found that the storage capacity and the plate heat exchanger’s effectiveness, contribute the most to the system’s and PVTs’ heat productivity. Whilst heat productivity depended more on the parameters’ variation, the power generation was influenced mainly by the collectors’ tilt. The results of this study are significant for design and operation of these systems. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.
  • Application of the superposition technique in conduction heat transfer for analysing arrays of shallow boreholes in ground source heat pump systems
    Application of the superposition technique in conduction heat transfer for analysing arrays of shallow boreholes in ground source heat pump systems Naranjo-Mendoza, Carlos; Wright, A. J.; Oyinlola, M. A.; Greenough, R. M.
  • Thermal Analysis of an Earth Energy Bank
    Thermal Analysis of an Earth Energy Bank Naranjo-Mendoza, Carlos; Sakellariou, Evangelos; Wright, A. J.; Oyinlola, M. A.; Greenough, R. M.
  • Experimental study of a domestic solar assisted ground source heat pump with seasonal underground thermal storage through shallow boreholes
    Experimental study of a domestic solar assisted ground source heat pump with seasonal underground thermal storage through shallow boreholes Greenough, R. M.; Naranjo-Mendoza, Carlos; Oyinlola, M. A.; Wright, A. J. With the current need to reduce carbon emissions, new technologies have been developed in recent years to satisfy building thermal demands. Among others, ground-source heat pumps (GSHP) have been implemented, in both commercial and residential applications, to meet heating and cooling needs in a cleaner and more energy efficient way. Likewise, solar thermal systems have been integrated into conventional GSHP systems to reduce the size of the ground heat exchanger and provide seasonal heat storage. So far, this technology has been used in large commercial or residential buildings, mainly due to its high installation costs. This paper describes a study of an experimental Solar Assisted Ground Source Heat Pump (SAGSHP) system for domestic heating applications. The system uses an array of shallow (1.5-metre deep) vertical boreholes to store heat seasonally in an underground ‘earth energy bank’. The results show that after 19 months of operation the system was able to show a good performance in order to cover the space heating requirements of the building in winter. Likewise, it was evidenced that the solar energy injected in the ground is useful not only to recover the soil from the thermal imbalance but also to store heat. Results also highlighted the need to improve the control strategy, mainly to avoid excessive inlet fluid temperatures at the evaporator. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.
  • Solar and geothermal energy for low-carbon space heating and energy independence.
    Solar and geothermal energy for low-carbon space heating and energy independence. Sakellariou, Evangelos; Wright, A. J.; Oyinlola, M. A. In developed countries, space heating is highly dependent on fossil fuels consumption. Also, the non-renewable fuels combustion emits CO2 which is claimed to impact the most on greenhouse effect. The utilization of Renewable Energy Sources (RES) for space heating, instead of fossil fuels, has been found to be feasible for systems’ greater energy independence and reduction in CO2 emissions. Solar Assisted Ground Source Heat Pump (SAGSHP) systems are a promising technology which can be used to accomplish the above framed target. A mathematic model of a SAGSHP system was built and a parametric analysis for Birmingham which is a city located in the UK’s West Midlands was conducted. Two scenarios based on two different dwellings were investigated, the one was a house recently erected and the other was a refurbished house. As regards the new house, simulation results showed that the utilized energy for space heating and Domestic Hot Water (DHW) can vary from 33% up to 73% RES dependent and, at the same time, electricity generation can be 2.21 times higher than the system’s demand. As regards the energy renovated dwelling, the RES contribution to the delivered heat was found to be between the 33% and 63%, while the electricity generation did not result in any surplus energy from the consumed. Finally, by making use of SAGSHP system instead of a natural Gas boiler, the reduction of CO2 emissions was found to be between 300kg/year and 2,170kg/year for the new building and from 245kg/year up to 3,221kg/year for the refurbished house, respectively. In both cases, SAGSHP systems proved to be a feasible practice for greater energy independence from non-renewable energy sources with substantial positive impact on the greenhouse gasses emissions.
  • Are shallow boreholes a suitable option for inter-seasonal ground heat storage for the small housing sector?
    Are shallow boreholes a suitable option for inter-seasonal ground heat storage for the small housing sector? Naranjo-Mendoza, C.; Wright, A. J.; Greenough, R. M. In recent years, various researchers have studied the performance of Solar Assisted Ground Source Heat Pump (SAGSHP) systems using borehole heat exchangers. However, the research conducted has been limited to conventional boreholes (30m to 150m depth), which are expensive and not suitable for the small housing sector. This paper reports an experimental analysis of a shallow SAGSHP system with inter-seasonal storage. The system, installed in Leicester UK, consists of seven photovoltaic-thermal (PVT) collectors connected in series with an array of 16 shallow boreholes (1.5 meters depth). Data regarding the energy fluxes involved in the soil-based thermal store have been monitored and analysed for one year. The results show that the shallow soil is able to serve as a storage medium to cover the heating demands of a near zero energy domestic building. However, it was noticed that in addition to the solar heat captured and stored in the soil, the system covers part of the heating demand from heat extracted from the soil surrounding the thermal store. During winter, the lowest temperature reached by the soil so far is 2 °C. Hence, no freezing problems have occurred in the soil. An analysis of the temperature variation of the ground storage under the system operation is also shown. open access
  • A comparison of analytical and numerical model predictions of shallow soil temperature variation with experimental measurements
    A comparison of analytical and numerical model predictions of shallow soil temperature variation with experimental measurements Naranjo-Mendoza, C.; Wright, A. J.; Oyinlola, M. A.; Greenough, R. M. In several fields of enquiry such as geothermal energy, geology and agriculture, it is of interest to study the thermal behaviour of shallow soils. For this, several analytical and numerical methodologies have been proposed to analyse the temperature variation of the soil in the short and long term. In this paper, a comparative study of different models (sinusoidal, semi-infinite and finite difference method) is conducted to estimate the shallow soil temperature variation in the short and long term. The models were compared with hourly experimental measured data of soil temperature in Leicester, UK, at depths between 0.75 and 2.75 m. The results show that the sinusoidal model is not appropriate to evaluate the short-term temperature variations, such as hourly or daily fluctuations. Likewise, this model is highly affected by the undisturbed ground temperature and can lead to very high errors. Regarding the semi-infinite model, it is accurate enough to predict the short-term temperature variation. However, it is useless to predict the long-term variation at depths greater than 1 m. The finite difference method (FDM) considering the air temperature as a boundary condition for the soil surface is the most accurate approach for estimating both short and long-term temperature variations while the FDM with heat flux as boundary condition is the least accurate approach due to the uncertainty of the assumed parameters. The ranges of errors for the sinusoidal, semi-infinite and FDM are found to be from 76.09 to 142.13%, 12.11 to 104.88% and 1.82 to 28.14% respectively. The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.
  • An experimental investigation into the use of water to provide thermal mass in building fabric
    An experimental investigation into the use of water to provide thermal mass in building fabric Wright, A. J.; Pascarel, Elise The development of renewable energy is essential, however many renewable resources are intermittent. Therefore, developing storage techniques has become a major issue of the energy field. In particular, thermal energy storage can help to manage resources, reducing energy consumption and improving passive buildings. Heavy masonry materials (brick, stone, concrete) have been used for many centuries, and use of phase change materials have been researched recently for this role. But water, which has one of the highest sensible heat capacities known and is free, appears so far to have been almost neglected. This paper presents an experimental laboratory study into the use of water as a sensible thermal storage medium, and a comparison with sand, which has similar properties to masonry. The thermal responses of ‘walls’ containing water or sand have been measured for various dynamic thermal inputs. The experiments were done with an insulated box of length 125 cm, width 60 cm and depth 60 cm, with separate insulated lid. Various ‘walls’ were installed, separating the box into two equal parts. For the first set of experiments, the dividing wall was a box made of 4mm acrylic sheet, internal width 40mm. For the second set of experiments, the wall was made of 6 stackable 5 litre plastic water containers. A heat mat was placed in one half of the box, connected to a DC power supply. Experiments were done with the box top entirely insulated, or with just the heated side insulated, the other side being open to the air, or with the heated side covered but not insulated. The response of the system to various step and cyclic heat inputs, corresponding to heat gains in a room, was investigated. Twelve thermocouples were fixed at different points in the rig, in order to measure the evolution of temperature over time. A heat flux sensor was used to measure heat flow across the wall surfaces. These data were collected with the software LabVIEW and analysed using a spreadsheet. Significant differences in thermal response were observed between water and sand. It was found that the water can store more heat than sand, taking longer to warm up and release heat. Due to convective processes, the heat also transferred more quickly into the water, and across the acrylic box when filled with water compared to sand. These results show that water acts as an effective sensible heat storage medium, and unlike phase change materials will operate across a wide temperature range. Water thermal storage could be applied in buildings, or temporary structures, to provide effective thermal mass at low cost to provide improved comfort and reduced energy consumption.
  • Evaluation of the viability of solar PV for Kurdistan
    Evaluation of the viability of solar PV for Kurdistan Wright, A. J.; Bulbas, Tavgar Iraqi Kurdistan, or officially the Kurdistan Region, is an autonomous region of Iraq. Following the Iraq war of 2003, it became relatively stable and prosperous, at least compared to the rest of Iraq which was very unstable. More recently the Kurdistan Region has played a major role in the war against ISIS, and receiving large numbers of refugees and displaced persons from surrounding conflict zones, particularly Syria. These factors have led to a rapid increase in energy demand. The region has gas and oil, and also generates hydro power. Most of the country is on the electricity grid, but supply is often unable to meet demand causing frequent power cuts and rationing. Some of the shortfall is made up by private generators connected locally to the grid. Solar photovoltaic (PV) power has seen rapid growth globally in recent years due mainly to falling prices of panels, and proven performance. In the Kurdistan Region PV has very low penetration, but great potential given high levels of solar radiation. However, within the Kurdistan Region there is great variation in the viability of PV power due to differences in climate, political stability, and proximity to conflict. This paper, using novel data gathering methods because conventional approaches are impractical, assesses the potential for PV in 31 locations according to seven criteria, and gives an overall score from 0 to 10. Eight scored 8-10; fourteen scored 6-7. The results show a wide variation in suitability of PV. A similar approach could be applied to analyze viability in other regions with similar issues. The technical options for PV connection are considered, including cost and potential for islanding, together with other renewable energy options.

Click here for a full listing of Andrew Wright's publications and outputs.

Key research outputs

Qiu, Z., Ma, X., Li, P., Zhao, X., and Wright, A. (2017) Micro-encapsulated phase change material (MPCM) slurries: Characterization and building applications. Renewable and Sustainable Energy Reviews, 77, pp. 246–262

Naranjo-Mendoza, C., Oyinlola, M., Wright, A. and Greenough, R. (2018) A comparison of analytical and numerical model predictions of shallow soil temperature variation with experimental measurements. Geothermics, 76, pp. 38-49.

Mendoza, C., Oyinlola, M., Wright, A. and Greenough, R. (2019) Experimental study of a domesticsolar assisted ground source heatpump with seasonal underground thermal storage through shallowboreholes. Applied Thermal Engineering

Naranjo-Mendoza, C., Greenough, R.M. and Wright, A.J. (2018) Are shallow boreholes a suitable option for inter-seasonal ground heat storage for the small housing sector?. In: Proceedings of the IGSHPA Research Track 2018, 18th - 20th September 2018, Stockholm, Sweden.

Wright AJ and Firth S, The nature of domestic electricity-loads and effects of time averaging on statistics and on-site generation calculations, Applied Energy, Vol 84, pp 389-403, (2007), ISSN: 0306-2619

Shipworth M, Firth SK, Gentry MI, Wright AJ, Shipworth DT & Lomas KJ (2009), Central heating thermostat settings and timing: building demographics, Building Research & Information, Vol 38, Iss 1, pp 50-69

Research interests/expertise

Energy in buildings and thermal storage, modelling, monitoring and climate change in relation to buildings, retrofit.

Areas of teaching

Low carbon energy, sustainable buildings, research skills.

Qualifications

BSc Applied Maths, MSc Atmospheric Physics, PhD

Courses taught

Building physics, Sustainable Energy, Sustainable Buildings, Research Methods. (IESD MSc courses).

Honours and awards

British Science Association Media Fellow 2011

Membership of external committees

CIBSE: Member of Schools design group

Membership of professional associations and societies

Fellow of CIBSE

Member of the Energy Institute, 2013

Professional licences and certificates

Chartered Engineer 1988 -

Projects

SAVES2 - Students Achieving Valuable Energy Savings 2. This EU project is helping students to save energy and reduce exposure to fuel poverty. It incorporates two strands that engage with students living in university accommodation (Student Switch Off) and in the private-rented sector (SAVES). 

Conference attendance

International Conference on Energy, Environment and Economics (ICEEE2019) 20-22 August 2019, Edinburgh Conference Centre, Heriot-Watt University, Riccarton, Edinburgh.

Wright, A.J., Korolija I., Zhang Y. Optimization of dwelling design under current and future climates using parametric simulations in EnergyPlus, CIBSE Technical Symposium- Delivering Buildings that are truly fit for purpose, Liverpool, April 2013.

A. J. Wright, M.R Oates, R. Greenough. Concepts for dynamic modeling of energy-related flows in manufacturing, Applied Energy Conference, Suzhou, China, July 2012.

Consultancy work

Academic lead on Knowledge Transfer Partnership with York Teaching Hospital NHS Foundation Trust (2011 – 2013).

Current research students

Student

Mode

Role

Carlos Naranjo-Mendoz

Full-time 2nd

Evangelos Sakellariou

Full-time 1st

Alfonso Senatore

Part-time 1st

Jamal Saif

Full-time 1st 

Externally funded research grants information

Projects lead on:

LESSONS project, TSB, collaborative research, April 2010 – March 2013, PI for DMU work, Pick Everard, Vanguard Homes Ltd., IES

THERM, TSB, collaborative research, Sep 2008 – Aug 2010, CI, Toyota, Airbus, IES

Retrofit for the Future, TSB, 6 projects, 2009-2012, East Midland Housing, Newcastle City Council, Vanguard Homes, PI for DMU work.

Closing the Gap, i_net, PI, Jeld Wen UK Ltd, Vanguard Homes, Nottingham Trent University, 2010.

Professional esteem indicators

Journal Refereeing information:

Mainly: Energy and buildings; Building and Environment; Building Services Research Information and Technology; Applied Energy; Building Services Engineering Research & Technology.

Case studies

Work on our Retrofit for the Future project (reported on TV and other media) is influencing retrofit and new build thinking for East Midlands Housing Group.

Advising on development of a ‘solar house’ which stores solar heat energy from the summer underground, and uses it to heat the house during the winter. This is under construction in Great Glen near Leicester by Caplin Homes.  I was interviewed about this on Radio Leicester in March and it featured in the Leicester Mercury.

Andy-Wright

Search Who's Who

 

 
News target area image
News

DMU is a dynamic university, read about what we have been up to in our latest news section.

Events at DMU
Events

At DMU there is always something to do or see, check out our events for yourself.

Mission and vision target area image
Mission and vision

Read about our mission and vision and how these create a supportive and exciting learning environment.