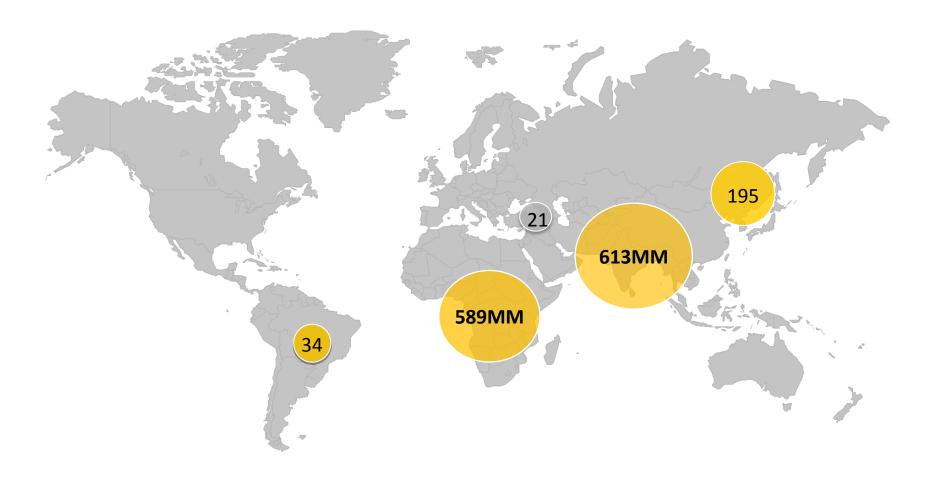
Solar PV based lighting in South Asia region: Institutional and Technological Trends


Debajit Palit
The Energy & Resources Institute
New Delhi

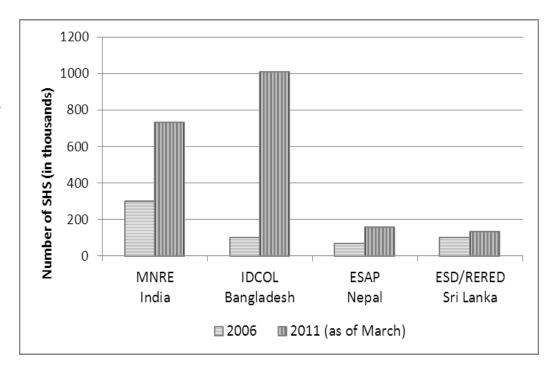
The Global Need

South Asia

- Home to 1/5th of global population in 4% of world land mass
- Accounts for 42% of global population w/o electricity access
- One out of every two people in the rural areas 614 million people – w/o access to electricity
- Solar PV is preferred option for RE after grid extension

Country	Total population (millions)	Population without electricity (millions)	Rural electrification (%)
Afghanistan	28.4	23.8	12.0
Bangladesh	156	95.7	28.0
Bhutan	0.69	0.2	40.0
India	1166	403.7	52.5
Nepal	28.5	16.5	52.5
Pakistan	176	68.0	46.0
Sri Lanka	213	4.7	75.0

Source: IEA 2010

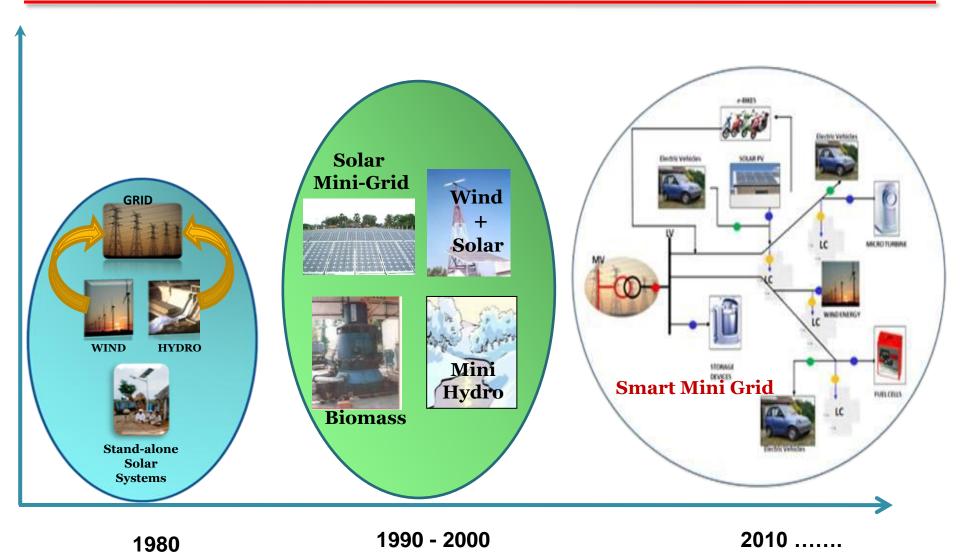

Scope of Presentation

- Current trends of Solar PV for rural electrification
- Solar program in Bangladesh, Nepal, Sri Lanka and India
- Comparative analysis to exploit cross learning potential
 - Policy and regulatory architecture
 - Technical design and sizing
 - Service delivery models
 - Pricing of systems
 - Access to Finance
 - Monitoring and maintenance
- Challenges & Way forward
- Conclusion

Solar PV in South Asia: Current Trends

- Mostly donor/subsidy supported projects, Also combination of free market and grant based models
- Decentralized solutions
 - Solar Home Systems (SHS) & solar lanterns (SL)
- Centralized solutions
 - PV mini grids (SMG)
 - solar charging stations

South Asia: Technologies & Business Models


Country	Technologies implemented	Business models	SHS pricing \$/Wp
India	SHS, SMG, SL	Consumer financing, leasing, VEC, fee-for- service	7.5
Bangladesh	SHS	Consumer financing	6.5
Nepal	SHS, SSHS	Credit Sales	11.6
Sri Lanka	SHS	Consumer financing	9.6

 Lower system cost in Bangladesh & India due to local assembly & manufacturing

Technology Transition

Challenges in Solar PV Sector

- High cost of technology and or service
 - Not within the reach of lower strata of society
- Untested products creating negative impact
- Maintenance of systems A critical determinants for limited success of many programs in the region
- Wherever responsibility outsourced to equipment suppliers (such as govt. programs) dissatisfaction with timeliness of the maintenance reported
- Single Window model vis-à-vis Two Window model
 - Loan repayment directly impacted by improper service

Institutional and Policy Challenges

- No long term policy instruments for solar PV in countries
- Dissemination suffers from uncertainty in the political framework conditions
- SHS not considered as a means of rural electrification
 - India and Bangladesh as they cater only to lighting needs
- Absence of standard set of guidelines for implementation
- Credit provided independent of income level
 - Financial mechanisms are not in line with income level of poor HHs (the section w/o electricity access)

Technology & Institutional Model

- √ Fee-for-service model may be closer to need of poorer HHs
 - Renting of lantern from a SCS
 - Providing only lighting service from a solar DC micro grid
- Use high efficient LEDs to bring down cost
 - Reduced panel size, freight & storage cost
 - Around 30% cost reduction achieved in terms of lumen-hour under TERI's LaBL
- ✓ Hybrid model of Solar Charging Station DC micro grid
 - An ideal enterprise based model for providing lighting & value added energy services

Lighting a Billion Lives

A commitment to improving the quality of lives of rural communities

- Sets up solar charging stations in energy poor villages that offer certified, bright, solar lanterns for rental to the local people.
- A trained local entrepreneur operates and manages the charging station and rents the solar lanterns every evening for a affordable fee.

Technical Model

Charging stations are expandable to solar energy hubs providing :

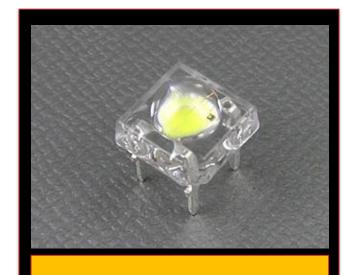
- Battery charging
- Mobile charging
- Lantern charging
- Water purification

A typical Solar Charging Station

Innovating at LaBL

- CONTINUOUS IMPROVEMENTS in solar lantern designs, driving down cost, improving efficiency & quality
- CHARGING STATIONS EXPANDABLE TO SOLAR ENERGY HUBS, providing services like water purification, mobile & battery charging
- TECHNOLOGY RESOURCE CENTRE, an after-sales service network for responsive repair services through local community representatives

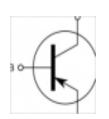
Trend in LED development


State-of-the-Art LEDs at competitive price

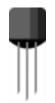
Luminous efficacy-110-120 lm/W Life: 50,000 hrs & 70% remaining No UV emission

Luminous efficacy-150 lm/W Life: more than 50,000 hours Thermal management: Good No UV emission

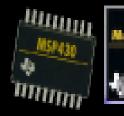
Upto 2006


2008

2010


Trend in electronics development

Enhanced reliability, efficiency, flexibility in electronic circuitry



- Basic battery charger used with no profiling
- Large no of components used, more failures, less efficiency

- Compact integrated solutions with Highly efficient LED drivers
- · Basic battery charger with no profiling but with better circuit protections
- Efficiency: 70-80%

- Compact integrated solutions with Highly efficient LED drivers
- Microcontroller based intelligent charge controllers with battery profiling and higher flexibility
- Efficiency: 85%
- Micro-switch / touch panel based systems improving reliability

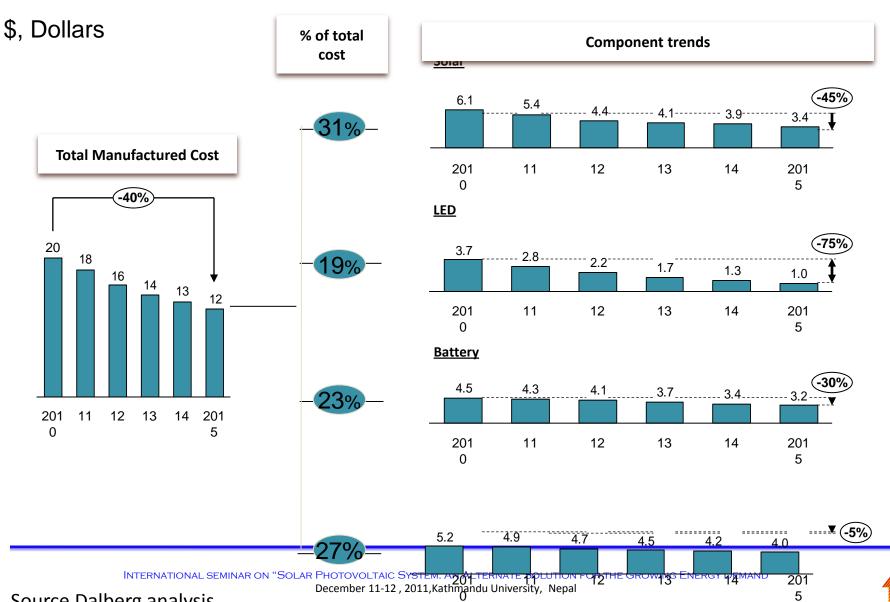
Upto 2007

2007-09

2010

Trend in battery development

Incorporating long-life, environment friendly batteries



2009 2010

2

Decline in costs with technology development

Journey so far.....

Laltini represents the goal of rural enlightenment through LaBL

350 000 lives impacted 70 000 solar lanterns

1200 villages covered

17 states in India
6 countries

> 1200 green jobs created

> 60 NGOs involved

New Technology: Solar DC Micro Grid

Renewable Power Generation: 100 households would require 500-700 watts-peak of solar panels. Panels are installed on the rooftop of a village house.

Battery Bank: 100 households would require around 500 Amp-hours of storage capacity. Batteries are stored in a cabinet inside the same house or distributed battery storage at individual households

Power Distribution: DC distribution lines run along the rooftops from the battery bank to households within the village. Power is distributed for 8 hours each night at 24 volts.

LED: Each household having 2 or 4 LED lamps (3 levels)

Policy: Challenges & Way forward

- Dissemination suffers from uncertainty in the political framework conditions
- SHS not considered as rural electrification
 - India and Bangladesh as they cater only to lighting needs
- Absence of standard set of guidelines for implementation
- ✓ Proper policy enablers at country level
 - Jawarlal Nehru National Solar Mission in India
- ✓ Regional level policy cooperation & sharing knowledge
- ✓ Robust institutional structure for implementation

Conclusion

- Catalyst for scale up
 - Improved access to capital/financial innovation
 - Development of local after-sales service infrastructure
 - Customer centric market development
 - Regular stakeholder involvement
- Improved design efficiency, economy of scale
 - Adopt LEDs without compromising quality and level of illumination
- Need to remove barriers to supply, demand & scalability
- Adopt standard process and metrics for scaling up
 - Reduced cost
 - Easy to attract investment

