

Advantages and Disadvantages of Bioenergy for Off-grid Electrification

The case of Jatropha-based small-scale power supply in Indonesia

Dipl. Ing. Mirco Gaul

Microenergy-Systems Postgraduate School Centre for Technology and Society & Institute of Energy Engineering Technische Universität Berlin, Germany

Dundee 06.07.2011

Content

- - 1. Personal background
 - 2. Short introduction into biomass-based electrification
 - Gasification, biogas and plant oil
 - Advantages and challenges of biomass
 - 3. Jatropha-based Rural Energy Service Pathways (RESP)
 - Case study in Indonesia/Sumbawa
 - A methodical approach for the analysis of RESP
 - Energy and cost efficiency
 - Improvement of Jatropha-based RESP

1. Personal background

Research:

Postgraduate program

'Microenergy Systems for Decentralized, Sustainable Energy Supply in Structurally Weak Areas'

Hosted at the Center for Technology and Society at the TU-Berlin, Germany

Funded by Hans-Böckler-Foundation since 2007, 2nd Phase starts in 2012-2015

Currently seven PhD projects at 7 institutes and 4 universities

International Conference on "Micro Perspectives for Decentralized Energy Supply", 7-8 April 2011 in Berlin

www.tu-berlin.de/microenergysystems

Consulting:

SiNERGi GmbH

Consultancy services for projects and events in renewable energies and climate protection

Founded in 2007 by M. Gaul, M. Schröder, and M. Seißler

Interdisciplinary team looking at economy & markets, policy & regulation, and technology

Focus on decentralized energy services and rural development

Clients: public ministries and agencies (GIZ 'Energizing Development', KfW) and the consulting sector (e.g. Ecofys)

www.sinergi.de

Dundee 06.07.2011

Often stated advantages of bioenergy

- Competitive costs
- Biomass is storable (in opposite to wind and solar energy)
- Electricity can be generated when it is needed
- Biomass based generators produce enough power for small machinery and productive use (in contrast to PV)
- Potential for local value chains with income generation for rural population
- Incentives for re-forestation

----17

Comparison of the current status of approaches for rural electrification based on gasification, anaerobe digestion (biogas) and straight vegetable oil (SVO)

- High costs in relation to fossil fuels and in absolute terms, too expensive for the target group (as other renewable or fossil energy services too)
- The technologies need long-term professional support for their proper operation
- Challenge: complex conversion technology (in case of gasification)
- Challenge: low productivity (in case of SVO)
- → None of these technologies is fully commercial for decentralized small-scale electrification and consequently cannot yet be recommended as a standard solution for projects with the objective of rural electrification.

However, in principle the practicability has been proven and in some cases cost are not very far from being competitive

 \rightarrow Hence, more pilot applications with a research component are needed.

Based on a study by Elmar Dimpl on behalf of GIZ focussing biomass gasification, anaerobic digestion (biogas), and straight vegetable oil (SVO) as fuel for power generation (<100 kW), http\\:energypedia.info

The challenge of biomasses-based rural electrification is not only the development of a specific conversion technology, but how to address complexity:

Energy resources

Land use, water, and input competition

Biomass competition: - Food, Fodder, Fibre, Feed, Fertilizer, Finance and Fuel

Competing resources: - Solar, water, wind, hydro, fossil & grid

Conversion pathway

Solid, liquid, gaseous fuels, heat, electricity compete for the same biomass resource

Alternative competing pathways based on solar, water, wind, hydro, fossil & grid

Energy demand

Demand for light, heat, mechanical power, and ICT

Non-standardized technologies & fuels for energy services

Variation of demand and purchase power

How can specific bioenergy-based services be compared?

A rural energy service pathway describes the full energy conversion chain from extraction, conversion, distribution, and end-use to provide a specific energy service

Jatropha Curcas L.

Claimed potential for small scale bioenergy (the Jatropha system)

Plant oil can be used for all 3 bioenergy services (light, heat, mechanical power)

Scenarios of service pathways

1. Baseline for wood, kerosene, diesel and gasoline

2. Jatropha-based options for liquid, and gaseous pathways

3. Alternative options with other renewables

Energy service demand categories

1. Lighting

2. Cooking

3. Mechanical power

For which energy service is a specific Jatropha-based RESP competitive compared to the baseline, other Jatropha, or other renewable RESP?

3. Jatropha-based Rural Energy Service Pathways (RESP)

Dundee 06.07.2011

8

Scenario analysis

- LCA (GEMIS 4.6)
- 1 Baseline, 3 Jatropha (HH, VI, RE), 1 Alternative RET
- Comparison present case vs. best case (interest rate decreased, fuel price & efficiency increased)

Energy efficiency

• Net Energy Ratio (NER)

Cost efficiency

• Net Energy Cost (NEC)

Cooking Wood stove	Lighting	Mechanical power
Wood stove		
	Kerosene lamp	Diesel motor
Plant oil stove (HH, VI) Biogas stove (HH)	Plant oil lamp (HH, VI) Biogas lamp (HH)	Biodiesel motor (HH, VI, RE) Plant oil motor (VI) Biogas motor (VI, RE)
Solar stove Improved wood stove	LED solar lamp	Hydro turbine
		Dundee 06.07.2011
]	(HH, VI) Biogas stove (HH) Solar stove	(HH, VI) Biogas stove (HH) Solar stove LED solar lamp

3. Jatropha-based Rural Energy Service Pathways (RESP)

Mirco Gaul

11 ----

17

Dundee 06.07.2011

CED = 8.8 kWh for the provision of 1 kWh useful energy

12

Dundee 06.07.2011

3. Jatropha-based Rural Energy Service Pathways (RESP)

Mirco Gaul

13

Dundee 06.07.2011

14

Balancing of labour, energy, and capital intensity

- Jatropha Household: high Net Energy Balance, but low productivity
- Jatropha Region + biodiesel: could become cost competitive but have low Net Energy Balances

Bioenergy has long and inefficient conversion chains

- Diesel baseline: Net Energy Ratio > 0.9 in all process steps beside end use
- Jatropha Net Energy Ratio only between 0.2 and $0.5 \rightarrow \text{total NER below } 0.05!$
- Low Net Energy Ratio multiplies the required amount of auxiliary energy!

Plant oil & biogas for mechanical power has the best potential, but..

- It is still an inefficient way of resource use: only if residues or side-crops are used, as well as byproducts (fertilizer/fodder/fiber), but no energy crops! However, competing uses for biomass residues might be more profitable....
- No 'one fits all' solution: viability of bioenergy systems depends on the kind of local resources, spatial data and scale, local demand etc. Extensive planning is required (but typically not affordable)!
- Other renewable energies (as hydro power) might be more competitive
- There are still significant technical barriers: reliability, service, O&M for machinery
- Additional institutional barriers: reliability of biomass supply, organization at village level (business and operation models)

Thank you for your attention!

Contact

Mirco Gaul Tel.: +49 -30 53210 487 gaul@ztg.tu-berlin.de

Technische Universität Berlin Postgraduate Program Microenergy Systems Centre for Technology and Society Secretary. ER 2-2 Hardenbergstr. 36 A 10623 Berlin Germany

Contact

Mirco Gaul Tel.: +49 -30 53210 487 mgaul@sinergi.de

> SiNERGi Renewable Energies GmbH Mahlower Str. 23/24 12049 Berlin Germany www.sinergi.de

17 ---17