Lessons learned on mini-grid projects in India

Debajit Palit

Associate Director and Fellow

The Energy and Resources Institute (TERI), New Delhi

Email: debajitp@teri.res.in

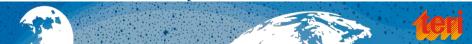
Presentation at Mini-grids for Rural Development in Africa, organised by RECP in Tanzania on 5th September 2013

What is TERI

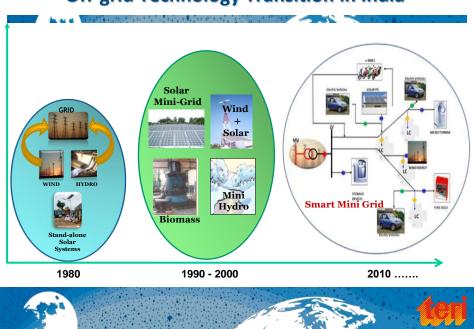
- A not-for-profit research & development and policy think tank;
- Established in 1974 in New Delhi;
- More than 1000 professionals, with centers spread across 5 cities in India; Overseas presence in London, Washington DC, Tokyo, Dubai and Addis Ababa

Working Areas

- Energy & Power
- Regulatory practices
- Habitats and transport
- Environment
- Water and NRM
- Climate policy
- Bio technology
- Social Transformation


Off-grid Access System in South Asia

The OASYS Project Objectives:


- ✓ Are there cost-effective and reliable off-grid electricity supply solutions that can meet the present & future needs, are socially acceptable, institutionally viable and environmentally desirable?
- ✓ Do these local solutions have the scaling-up and replication potentials and can these solutions be brought to the mainstream for wider electricity access in the developing world?

www.oasyssouthasia.dmu.ac.uk

Off-grid Technology Transition in India

Conducive Policy framework

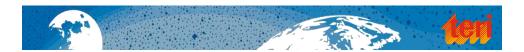
- REST Mission (2001)
 - · Acknowledged the role of distributed generation/mini-grids
- Electricity Act-2003
 - Universal service obligation to provide electricity by both central and state Government
 - No license required for generation and distribution tariff can be determined based on mutual consultation with consumers
- Rural Electrification Policy (2005)
 - Decentralized Distributed Generation (DDG) to be considered where grid extension is not feasible
- National Rural Electrification Scheme (2005)
 - Decentralized Distributed Generation (DDG) and Supply
- National Solar Mission (2009)
 - 1000 MW by 2017 and 2000 MW by 2022 of off-grid capacity

Mini-Grids in India

- Pioneer of Mini-Grid system
 - First solar mini-grid commissioned in nineties in Sunderbans Islands
- State-of-the-art system designs available during implementation & use of components
- Mostly cooperative model of service delivery
 - Involvement of local community from planning stage
- Policy enablers from time to time
- Around 5000 villages covered through mini-grids, serving more than 50,000 HHs
- Multiple technology adopted

What is Mini/micro Grid

A mini-grid is an electricity distribution network operating typically below 11 kV, providing electricity to a localized community and derives electricity from a diverse range of small local generators using renewable energy technologies with or without its own storage.

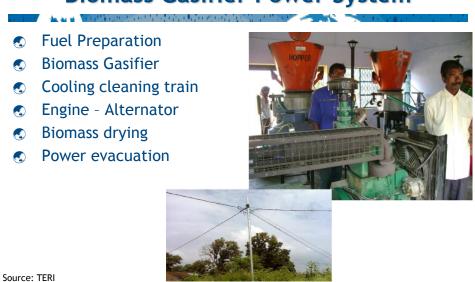

Mini-grids

- Either AC or DC
- Typically Wp to kWp
- Technologies
 - Solar PV
 - Biomass gasifiers
 - Mini/micro hydro
 - Biogas/bio fuel
- Usually community managed
- Covers around 10 to 500 households, shops, productive micro enterprises etc.

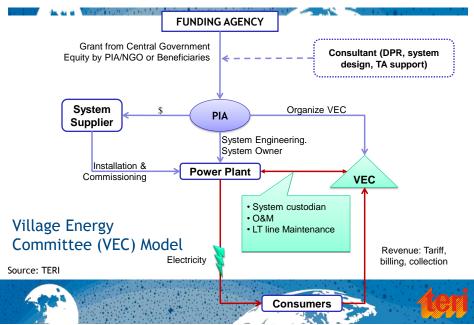
Why mini grids in India

- Technically, mini-grids have been preferred in many cases for remote areas over other options such as SHS,
 - as mini-grids provide electricity services for lighting & for powering various appliances, whereas SHSs typically provide only lighting services
 - Can support small productive applications
- Organisationally, managing mini-grids are easier compared to individual systems due to their centralised operation through a proper institutional arrangement

Solar PV AC Mini-grid

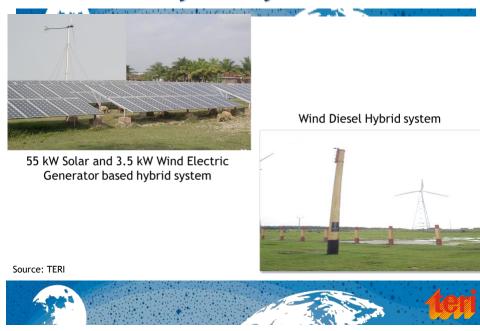


(eri

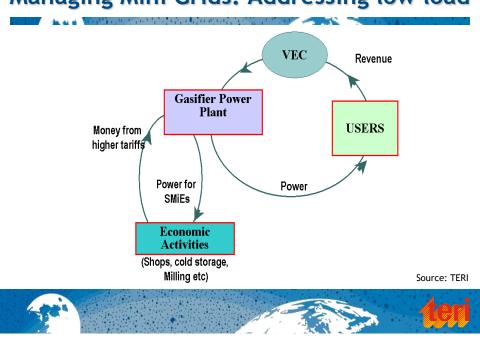

Control Room, Battery Bank, Grid

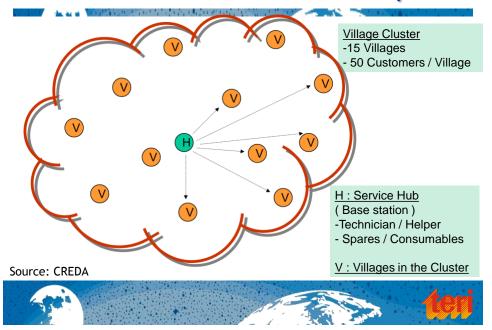
Biomass Gasifier Power System

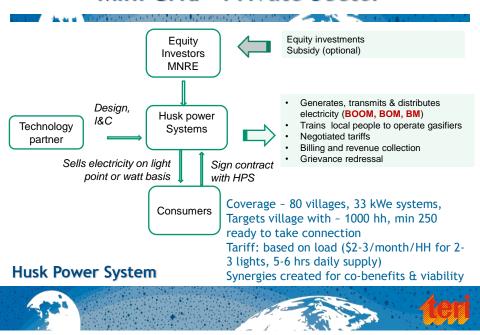
Managing Mini Grids: Earlier Model

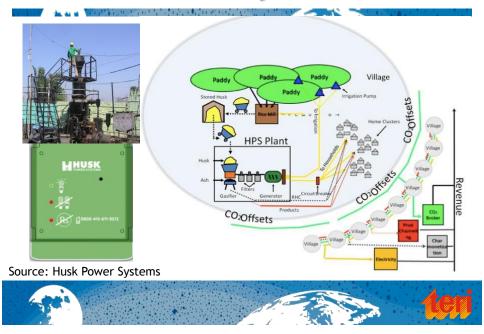

Some Lessons from early Mini grids

- Decentralized, low capacity, covering remote areas
- 🖏 Usually domestic loads served 🦽
- Limited by capacity and duration of supply
- Community as stakeholder
- Tariff based on flat rate, locally decided, depending on O&M cost and WTP
- Non commercial in nature
- Clustering of projects more successful


- Inability to meet increased demand, no smartness
 - Single energy resource catering to fixed load for fixed time
- Battery vulnerable, overdrawl by most consumers
- Generation not as per design quality issues of solar panel
- Difficulty in O&M because of remoteness
- Not linked to any productive enterprise/irrigation pumpset viability ??


Hybrid System


Managing Mini Grids: Addressing low load


Cluster Based Service Delivery

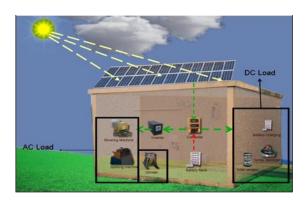

Mini Grid - Private Sector

HPS Ecosystem

New technical and delivery models

Solar DC micro grid

DC distribution lines (voltage varies depending on distance) run along rooftops from the battery bank to households over a short distance to power lights, mobiles etc. Charge controller 12V,10A


Running time: 5-6 hours Installation Cost: \$65 - \$80 per HH Tariff: \$ 2-3 per month, charged by operators

Solar Multi Utility

Multiple Energy Sources

- Solar PV
- Wind Aero Generators
- **Biomass Gasifier**
- **Hybrid Systems**

Multiple Applications

- **Charging lanterns**
- Powering computers,
- Charging cell phones
- Water purification
- Micro enterprises

Located near the energy utilization points in a village to provide electricity services as per the community's need

Source: TERI, 2012

Solar Multi Utility

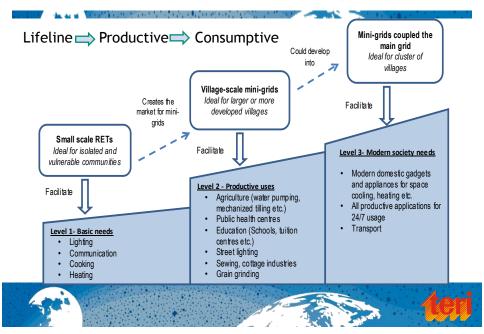
Self Help Groups, Farmer's Associations & Individuals from the surrounding villages access the SMU & utilize services

Key Lessons

- Optimizing design Adapt to local context
 - Instead of one technical solutions, number of solutions depending on local demand can be designed to optimally cater to domestic as well as micro enterprise and community load
 - ✓ Using the right metric for energy delivery
 - Negotiated tariff usually flat based
- Top-down approach /Organized delivery model
 - Opposed to popular approaches "let the community handle" -Each entity sticks to what it does best
 - Scaling up may need differentiated responsibility
- Effective maintenance Cluster based service delivery
 - Fruitful partnership between project proponent and System Integrators (penalty -incentive approach)
 - Structured communication channel

Key Lessons

- Strong govt. support Political will
 - ✓ A maintenance subsidy of Rs 25/household in Chhattisgarh
 - Right political framework removing uncertainty
 - Mix of subsidy driven and commercial model
- Creating an eco-system Learning from doing
 - Support to local manufacturing and development
 - Transition from ACMC to long-term CMC
 - Differential and focused capacity building



Takeaways

- Service delivery models to be structured considering the uniqueness of the region within which the plant is to be installed -Today off-grid, grid-connected tomorrow
- Contrary to prescribed models of off-grid electrification, topdown approach/organized structure seems to be working better than community model
- Designing variable tariff structures considering both ability to pay as well as operational expenses
- Strong regulatory & policy regime supports development of projects - Viability gap funding/Results based aid
- Need to build local capacity and adopt clustering for effective maintenance & viability of operation

Framework for Mini Grid

