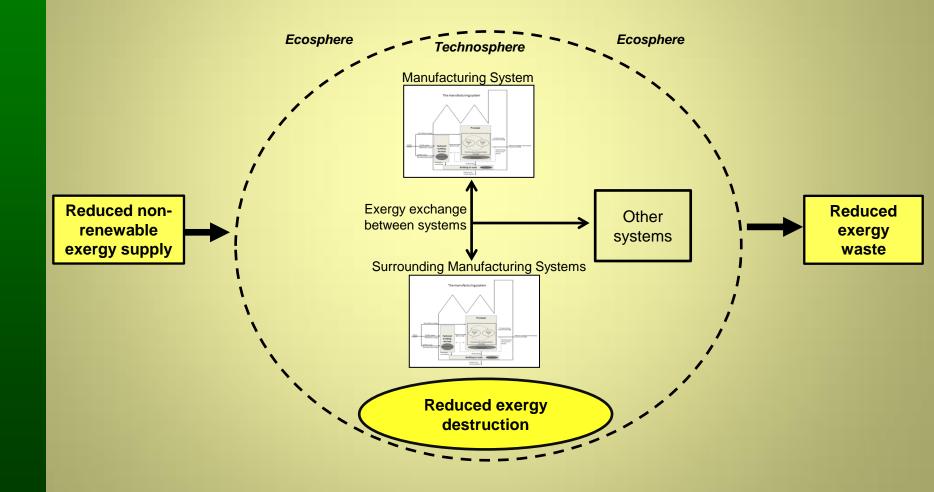

Resource efficient manufacturing

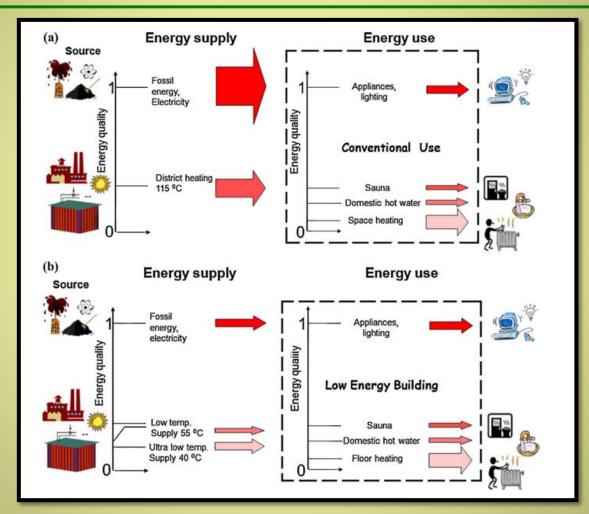
Sanober Khattak – The institute of energy and sustainable development (IESD)

De Montfort University



An exergy based conceptual approach to factory analysis

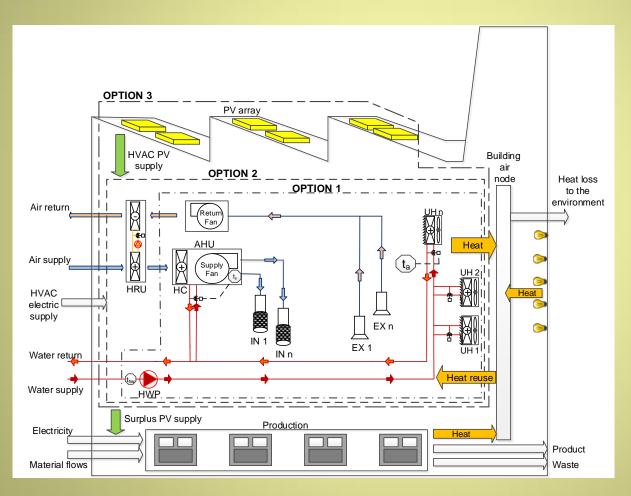
- An exergy based holistic view of the factory
- Why use exergy? Why take a holistic perspective?



Institute of Energy and Sustainable Development

Matching energy quality supply and demand in a building

Energy quality schematic (a) conventional use (b) Low energy building with supply and demand quality matching. Source(<u>Hepbasli, 2012</u>)



Case study – Factory heat reuse

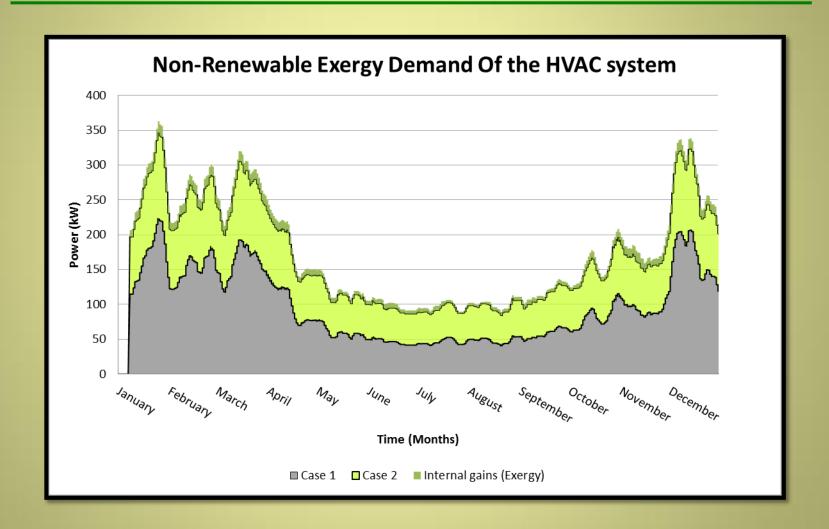
- Automotive cylinder head manufacturing line
- The factory HVAC system reuses heat from within the factory space (low grade thermal energy)
- The HVAC system energy and exergy efficiency quantified
- Exergy destruction quantified

Control Volume depicting the factory

Option 1:
No heat recovery

Option 2: With heat recovery

Option 3:
With heat recovery and renewable supply



Analysis approach

- Factory with heat reuse (Actual case)
 Compared to the factory without heat reuse (Simulation, E+)
- Exergy analysis conducted
- Quantifying effect of technology on resource efficiency

Exergy demand comparison

Summary of yearly results

	Non-renewable energy demand (MWh/year)	Non-renewable exergy demand (MWh/year)	Non-renewable exergy destruction (MWh/year)
Option 1 -No heat recovery	2962	851	732
Option 2 – With heat recovery	1329	627	581
Option 3 – With heat recovery and solar power	1118	412	361
Improvement	62.3%	51.6%	49.2 %

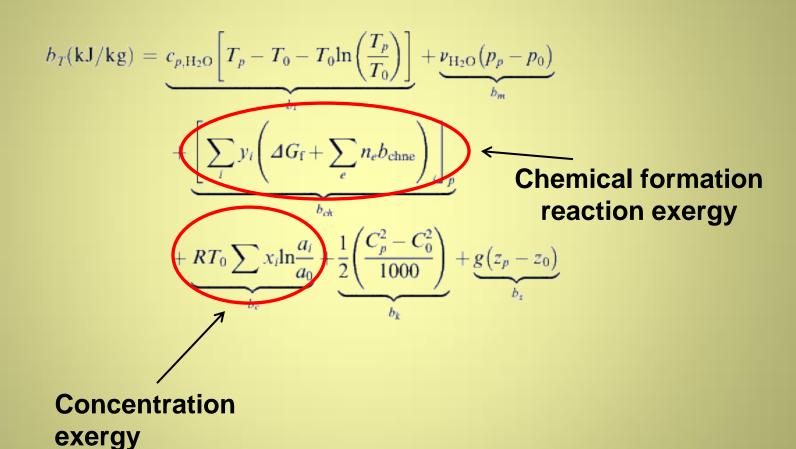
Institute of Energy and Sustainable Development

Summary

- Low grade heat is reused to reduce usage of a higher grade energy.
- Energy quality supply-demand matching improved.
- The reduction in exergy removal from supply resource quantified.
- No extra data in addition to an energy analysis required!
- Low level of complexity in exergy calculations

Water Reuse – Kettelby Food Factory

- 27/4 Production
- Processes and machinery (Oven, mashing, cleaning washing etc.)
- Energy and water use data, Main concern water use


Year	Gas (kWh)	Electricity (kWh)	Water (m³)
2011	913	,324	3,302
2012	679,290	224,898	3,335
2013	728,257	224,351	3,542
2014*	737,920	204,434	3,510

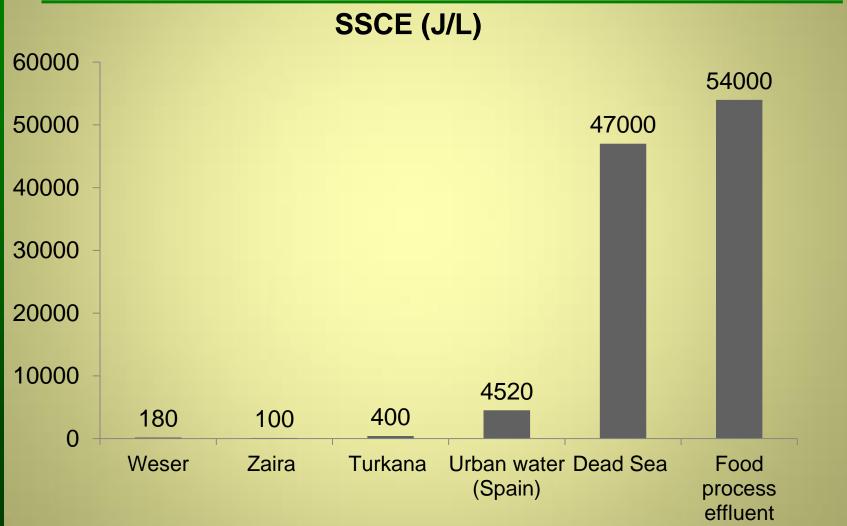
^{*}Weekly average based on actual values Jan-Mar

Energy and water consumption from [1]

Total exergy of a mass flow

Method of Chemical Exergy Calculation for the water sample

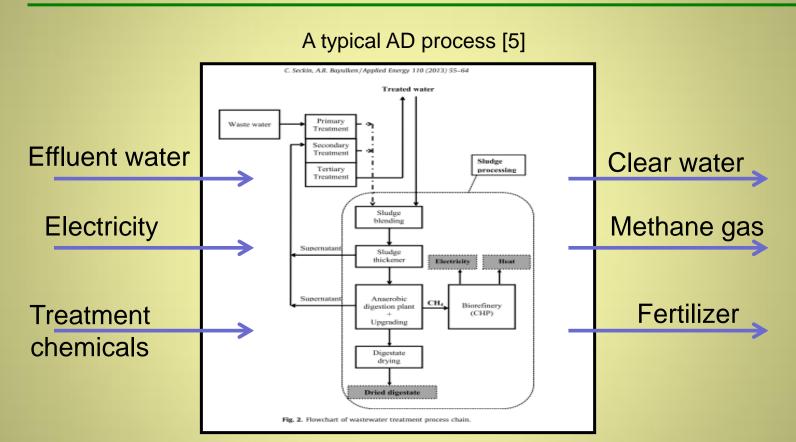
- Inorganic and Organic substances present.
- Different methods for organics calculation.
- Tests conducted:
 - Electrical conductivity
 - COD (Oxygen demand)
 - TDS (Total dissolved solids)
 - Anions/ Cations breakdown



Chemical analysis of effluent water sample and exergy calculation

	Me	Measureme Molar		olar		
Substance	e nt		fraction		Type of calculation	Exergy (kJ/L)
Chloride	330 mg Cl/L		0.000139218		Concentration Exergy	0.13079153
Sulphate	1.5 mg SO4/L		2.33551E-07		Concentration Exergy	0.00125579
Calcium	68 mg Ca/L		2.53755E-05		Concentration Exergy	0.09647113
Sodium	340 mg Na/L		0.116909961		Concentration Exergy	0.179371
Magnesium	16 mg Mg/L		0.005815136		Concentration Exergy	0.989158
Potassium	82 mg K/L		0.0479	953934	Concentration Exergy	0.12735
Organics	3870mg O2/L				Formation exergy: Method 1	52.632
	Results			Formation exergy: Method 2	66.7575	
		sensitive to the reference environment			Formation exergy: Method 3	54.438
Total						54.1 kJ/L
selecti		on!				

Comparison with water bodies around the world



Main contributor to the high value of exergy

Substance	Reference Environment [1]	Urban Waste Water [3]	River sample [4]	Food Process Effluent	Remarks
COD test result (mg/L)	N/A	7.6	4.56	3870	- 500 times Urban waste water - 848 times river water

Water treatment through AD(anaerobic digestion)

- Exergy efficiency of such a process is 97-98% [6]!
- Methane gas exergy produced is almost equal to the electricity used

References

- [1] Fuentes, P. S. (2014) "Opportunities for energy efficiency in food manufacturing. A building modelling and energy simulation approach" MSc thesis. De Montfort University
- [2] Ref:Chen, G. Q., and Xi Ji. "Chemical exergy based evaluation of water quality." *Ecological Modelling* 200.1 (2007): 259-268.
- [3] Armando, Gallegos-Muñoz, A. A. Zaleta, and R. H. V. Hugo. "On an exergy efficiency definition of a wastewater treatment plant." *International Journal of Thermodynamics* 6 (2003): 169-176
- [4] Martínez, Amaya, and Javier Uche. "Chemical exergy assessment of organic matter in a water flow." *Energy* 35.1 (2010): 77-84.
- [5] Seckin, Candeniz, and Ahmet R. Bayulken. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment—Determination of environmental remediation cost for municipal wastewater." *Applied Energy*110 (2013): 55-64.
- [6] Mora, C. H., and S. Oliveira. "Environmental exergy analysis of wastewater treatment plants." *Therm. Eng* 5 (2006): 24-29.