# Dr Zacharias Anastassi

**Job:** Senior Lecturer in Computational Mathematics

**Faculty:** Technology

**School/department:** School of Computer Science and Informatics

**Address:** De Montfort University, The Gateway, Leicester, LE1 9BH

**T:** 07487 524111

**E:** zacharias.anastassi@dmu.ac.uk

### Research group affiliations

Institute of Artificial Intelligence

### Publications and outputs

P37. F. Tsitoura, Z.A. Anastassi, J.L. Marzuola, P.G. Kevrekidis, and D.J. Frantzeskakis, Dark Soliton Scattering in Symmetric and Asymmetric Double Potential Barriers, Physics Letters A, 381, 31, 2514-2520 (2017).

P36. Z.A. Anastassi, G. Fotopoulos, D.J. Frantzeskakis, T.P. Horikis, N.I. Karachalios, P.G. Kevrekidis, I.G. Stratis, and K. Vetas, Spatiotemporal algebraically localized waveforms for a nonlinear Schrödinger model with gain and loss, Physica D, 355, 24-33 (2017).

P35. F. Tsitoura, Z.A. Anastassi, J.L. Marzuola, P.G. Kevrekidis, and D.J. Frantzeskakis, Dark solitons near potential and nonlinearity steps, Physical Review A, 94, 063612 (2016).

P34. Z.A. Anastassi, A.A. Kosti, A 6(4) Optimized Embedded Runge-Kutta-Nyström Pair for the Numerical Solution of Periodic Problems, Journal of Computational and Applied Mathematics, 275, 311-320 (2015).

P33. A.A. Kosti, Z.A. Anastassi, Explicit Almost P-Stable Runge-Kutta-Nyström Methods for the Numerical Solution of the Two-Body Problem, Computational and Applied Mathematics, 34, 2, 647-659 (2015).

P32. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A New Eight-Step Symmetric Embedded Predictor-Corrector Method (EPCM) for Orbital Problems and Related IVPs with Oscillatory Solutions, The Astronomical Journal, 145, 75 (2013).

P31. Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems, Journal of Computational and Applied Mathematics, 236, 16, 3880-3889 (2012) (Highly Cited Paper).

P30. I. Alolyan, Z.A. Anastassi, T.E. Simos, A New Family of Symmetric Linear Four-Step Methods for the Efficient Integration of the Schrödinger Equation and Related Oscillatory Problems, Applied Mathematics and Computation, 218, 9, 5370-5382 (2012) (Highly Cited Paper).

P29. A.A. Kosti, Z.A. Anastassi, T.E. Simos, An optimized explicit Runge-Kutta-Nyström method for the numerical solution of orbital and related periodical initial value problems, Computer Physics Communications, 183, 3, 470-479 (2011).

P28. A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge-Kutta-Nyström method for the numerical solution of oscillatory initial value problems, Computers and Mathematics with Applications, 61, 11, 3381-3390 (2011) (Highly Cited Paper).

P27. G.A. Panopoulos, Z.A. Anastassi, T. E. Simos, A Symmetric Eight-Step Predictor-Corrector Method for the Numerical Solution of the Radial Schrödinger Equation and related IVPs with oscillating solutions, Computer Physics Communications, 182, 8, 1626-1637 (2011).

P26. Z.A. Anastassi, A new symmetric linear eight-step method with fifth trigonometric order for the efficient integration of the Schrödinger equation, Applied Mathematics Letters, 24, 8, 1468-1472 (2011).

P25. G.A. Panopoulos, Z.A. Anastassi, T. E. Simos, A New Symmetric Eight-Step Predictor-Corrector Method for the Numerical Solution of the Radial Schrödinger Equation and Related Orbital Problems, International Journal of Modern Physics C, 22, 2, 133-153 (2011).

P24. D.F. Papadopoulos, Z.A. Anastassi, T.E. Simos, An optimized Runge-Kutta-Nyström method for the numerical solution of the Schrödinger equation and related problems, MATCH Commun. Math. Comput. Chem., 64, 2, 551-566 (2010).

P23. D.F. Papadopoulos, Z.A. Anastassi, T.E. Simos, A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation, Journal of Molecular Modeling, 16, 8, 1339-1346 (2010).

P22. A.A. Kosti, Z.A. Anastassi, T.E. Simos, An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems, Journal of Mathematical Chemistry, 47, 1, 315-330 (2010).

P21. Z.A. Anastassi and T.E. Simos: Numerical Multistep Methods for the Efficient Solution of Quantum Mechanics and Related Problems, Physics Reports, vol. 482-483, pp. 1-240 (2009) (review paper).

P20. D.F. Papadopoulos, Z.A. Anastassi, T.E. Simos, A Phase-Fitted Runge-Kutta-Nyström method for the Numerical Solution of Initial Value Problems with Oscillating Solutions, Computer Physics Communications, 180, 10, 1839-1846 (2009).

P19. D.S. Vlachos, Z.A. Anastassi, T.E. Simos, High order phase fitted multistep integrators for the Schrödinger equation with improved frequency tolerance, Journal of Mathematical Chemistry, 46, 4, 1009-1049 (2009).

P18. D.S. Vlachos, Z.A. Anastassi, T.E. Simos, High order multistep methods with improved phase-lag characteristics for the integration of the Schrödinger equation, Journal of Mathematical Chemistry, 46, 2, 692-725 (2009).

P17. Z.A. Anastassi, D.S. Vlachos, T. E. Simos, A new methodology for the construction of numerical methods for the approximate solution of the Schrödinger equation, Journal of Mathematical Chemistry, 46, 2, 652-691 (2009).

P16. Z.A. Anastassi, D.S. Vlachos, T. E. Simos, A new methodology for the development of numerical methods for the numerical solution of the Schrödinger equation, Journal of Mathematical Chemistry, 46, 2, 621-651 (2009).

P15. D.S. Vlachos, Z.A. Anastassi, T.E. Simos, A New Family of Multistep Methods with Improved Phase Lag Characteristics for the Integration of Orbital Problems, The Astronomical Journal, 138, 86-94 (2009).

P14. G.A. Panopoulos, Z.A. Anastassi, T. E. Simos, Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions, Journal of Mathematical Chemistry, 46, 2, 604-620 (2009).

P13. Z.A. Anastassi, D.S. Vlachos, T. E. Simos, A family of Runge-Kutta methods with zero phase-lag and derivatives for the numerical solution of the Schrödinger equation and related problems, Journal of Mathematical Chemistry, 46, 4, 1158-1171 (2009).

P12. Z.A. Anastassi and T.E. Simos: A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution, Journal of Mathematical Chemistry, 45, 4, 1102-1129 (2009).

P11. Z.A. Anastassi and T.E. Simos: A Six-Step P-stable Trigonometrically-Fitted Method for the Numerical Integration of the Radial Schrödinger Equation, MATCH Commun. Math. Comput. Chem., 60, 3, 803-830 (2008).

P10. G.A. Panopoulos, Z.A. Anastassi and T.E. Simos: Two New Optimized Eight-Step Symmetric Methods for the Efficient Solution of the Schrödinger Equation and Related Problems, MATCH Commun. Math. Comput. Chem., 60, 3, 773-785 (2008).

P9. T.V. Triantafyllidis, Z.A. Anastassi and T.E. Simos: Two Optimized Runge-Kutta Methods for the Solution of the Schrödinger Equation, MATCH Commun. Math. Comput. Chem., 60, 3, 753-771 (2008).

P8. Z.A. Anastassi and T.E. Simos: New Trigonometrically Fitted Six-Step Symmetric Methods for the Efficient Solution of the Schrödinger Equation, MATCH Commun. Math. Comput. Chem., 60, 3, 733-752 (2008).

P7. Z.A. Anastassi and T.E. Simos: A Family of Exponentially-Fitted Runge-Kutta Methods with Exponential Order up to Three for the Numerical Solution of the Schrödinger Equation, Journal of Mathematical Chemistry, 41, 1, 79-100 (2007).

P6. Z.A. Anastassi and T.E. Simos: A Trigonometrically-Fitted Runge-Kutta Method for the Numerical Solution of Orbital Problems, New Astronomy, 10, 301-309 (2005).

P5. Z.A. Anastassi and T.E. Simos: Trigonometrically Fitted Fifth Order Runge-Kutta Methods for the Numerical Solution of the Schrödinger Equation, Mathematical and Computer Modelling, 42 (7-8), 877-886 (2005).

P4. Z.A. Anastassi and T.E. Simos: Trigonometrically Fitted Runge-Kutta Methods for the Numerical Solution of the Schrödinger Equation, Journal of Mathematical Chemistry, 37, 3, 281-293 (2005).

P3. Z.A. Anastassi and T.E. Simos: A Dispersive-Fitted and Dissipative-Fitted Explicit Runge-Kutta method for the Numerical Solution of Orbital Problems, New Astronomy, 10, 31-37 (2004).

P2. Z.A. Anastassi and T.E. Simos: An Optimized Runge-Kutta method for the Solution of Orbital Problems, Journal of Computational and Applied Mathematics, 175, 1-9 (2005).

P1. Z.A. Anastassi and T.E. Simos: Special Optimized Runge-Kutta methods for IVPs with Oscillating Solutions, International Journal of Modern Physics C, 15, 1-15 (2004).

### Research interests/expertise

Numerical analysis, Numerical solution of initial/boundary value problems, Development and analysis of numerical algorithms

Scientific computing, Computational methods for the solution of real problems in physics, material science, chemistry, engineering etc.

Development of software packages, Parallel algorithms

### Areas of teaching

Numerical Analysis, Applied Mathematics, Linear Algebra, Calculus, Linear Programming, Nonlinear Programming, Operational Research, Parallel Algorithms, Statistics, Business Mathematics

### Qualifications

Ph.D. in Numerical Analysis

Diploma in Civil Engineering

### Courses taught

Foundations and Algebra

### Honours and awards

Young Scientists Prize on Numerical Analysis and Applied Mathematics awarded by the Scientific Committee of the International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece (Sep 2005).

Ericsson Award of Excellence in Telecommunications, Athens, Greece (Jun 2005).

### Membership of external committees

Member of the Program Committee of the annual conference “Computer Aspects of Numerical Algorithms” - CANA 2018